Mitochondria efficiently produce cellular ATP and determine the ATP availability in the cell, since they are a major site for the generation of ATP. Mitochondrial dysfunction contributes to the development of age-dependent insulin resistance [1], since mitochondrial capacity has been considered to be a good indicator of insulin sensitivity [2]. In addition to their role as the ‘power house’ of the cell, mitochondria are involved in the regulation of the energy balance through the induction of mitochondrial biogenesis. Calorie restriction and exercise result in increases in the NAD⁺/NADH and AMP/ATP ratios, respectively. Sirtuin (SIRT) 1/3 which requires NAD⁺ as the nucleotide is a co-substrate and activates peroxisome proliferator-activated receptor (PPAR) γ coactivator–1 α (PGC–1α) by deacetylation [3]. The increase in the AMP/ATP ratio directly activates AMP-activated kinase (AMPK) and further activates the PGC–1α through phosphorylation [4]. The phosphorylated and deacetylated PGC–1α co-activates nuclear-encoded nuclear genes via transcription factors such as the nuclear translocation of nuclear respiratory factor (NRF) 1/2, estrogen-related receptor (ERR) α,
β, γ, and PPAR α, β, γ [5]. These transcription factors activate mtDNA transcription, translation and replication, the production of oxidative phosphorylation (OXPHOS) subunits, and tricarboxylic acid (TCA) cycle enzymes and fatty acid oxidation enzymes, which leads to increased mitochondrial biogenesis [5].

In patients with diabetes, hyperglycemia induces intracellular glucose oxidation generating NADH and pyruvate, and enhances the influx of pyruvate into the mitochondria. Pyruvate is oxidized by the TCA cycle to produce NADH and FADH₂, which donate electrons that flow through the mitochondrial electron transport chain formed by inner-membrane-associated enzyme complexes. If the electrochemical potential difference is too high under high-glucose conditions, reactive oxygen species (ROS) are demonstrated to be generated at complex I and the interface between ubiquinone and complex III. The inhibitor of complex II, manganese superoxide dismutase (SOD), and uncoupling protein-1 (UCP-1) prevent the high-glucose-induced ROS production in bovine endothelial cells and inhibit the subsequent activation of protein kinase C (PKC), the formation of advanced glycation end-products (AGEs), sorbitol accumulation, and nuclear factor-kappa B (NFκB) activation [6, 7]. However, recently, a new concept in the understanding of diabetic complications, ‘mitochondrial hormesis’, was presented [8, 9]. In response to excess glucose exposure or nutrient stress, there is a reduction in mitochondrial superoxide, oxidative phosphorylation, and mitochondrial ATP generation in several tissues targeted in diabetes complications [8]. The continuous reduction of mitochondrial function is linked to the overproduction of oxidants from non-mitochondrial sources and the release of proinflammatory and profibrotic cytokines [9]. The series of evidence suggested that the activation of AMPK, SIRT1/3 and PGC-1α increased the mitochondrial capacity for OXPHOS, restoration of physiologic mitochondrial superoxide production, which is beneficial for insulin secretion by pancreatic β cells, insulin sensitivity in skeletal muscle and liver, and prevention of micro- and macro-vascular complications in diabetes [8].

Quality control of the mitochondria is critical for the maintenance of mitochondrial function, and dysfunction of the mitochondria plays critical roles in the development of diabetes and obesity. Mitochondria are reticular organelles that have high plasticity in their dynamic structures and constantly undergo fusion and fission processes; this plasticity is important for the quality control of mitochondria [10]. In this review, abnormalities in the mitochondrial fusion and fission dynamics, mitophagy in diabetes, and the significance of mitochondria as a therapeutic target is highlighted.

Mitochondrial Fusion and Fission Dynamics

Once close contact between mitochondria is established, the dynamin-related outer mitochondrial membrane (OMM) proteins mitofusin 1 (MFN1) and mitofusin 2 (MFN2) form homotypic (MFN1-MFN1 and MFN2-MFN2) or heterotypic (MFN1-MFN2) complexes [11]. After tethering, inner mitochondrial membrane (IMM) fusion is mediated by optic atrophy 1 (OPA1) depending on the inner membrane potential [12]. The process of fusion retains the capacity of the mitochondria and maintains genetic and biochemical homogeneity by allowing the dilution of superoxide species and mutated DNA and the repolarization of membranes [13]. Fission, a division process that produces one or more daughter mitochondria, requires cytosolic dynamin-related protein 1 (DRP1). Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) function as membrane contact sites between the ER and mitochondria. These ER-mitochondria contact sites have emerged as major players in lipid metabolism, calcium signaling, autophagy and mitochondrial dynamics [14]. The mitochondria constriction and division occur at ER contact sites [15]. Multiple receptors recruit DRP1 to the mitochondria, including four mitochondrially localized adaptor proteins: mitochondrial fission factor (MFF) [16], mitochondrial dynamics proteins of 49 and 51kDa (MiD49 and MiD51) [17, 18], and fission 1 (FIS1) [19]. The assembly of DRP1 dimers and oligomers forms a helical structure, and DRP1 hydrolyzes GTP and divides the mitochondria by constriction. So far, no mammalian inner membrane fission machinery has been identified [20] (Fig. 1).

Mitochondrial Biogenesis

The generation of new mitochondria, mitochondrial biogenesis, is distinct from mitochondrial fission, and
the former involves the complete replication of mitochondrial DNA. Mitochondrial biogenesis is driven by the transcriptional activator of NRF-1, NRF-2, and PGC-1α, which is activated by various pathways such as receptor tyrosine kinases, natriuretic peptide receptors and nitric oxide through the generation of cGMP: the activation of AMPK, Akt, SIRT1-mediated acetylation, PPARs, and ERRs [21]. The expressions of nuclear-encoded mitochondrial genes are actively transcribed, and the proteins with mitochondrial target sequences including the enzymes of the TCA cycle and OXPHOS, antioxidant enzymes, and mitochondrial transcription factor A (TFAM) are imported via translocase of the OMM and IMM complexes (TOM and TIM) into the mitochondria. In type 2 diabetes, the expressions of PGC-1α and its targeted genes are reduced, and they are associated with an impaired ability to produce mitochondrial ATP [22] and increased ROS production from the electron transport chain [6]. Thus, the activation of mitochondrial biogenesis by pharmacological activation targeting these molecules seems to be beneficial in the treatment of type 2 diabetes and obesity [23, 24].

Apoptosis and Mitophagy

Upon the induction of apoptosis, the OMM is fragmented by the translocation of DRP1 from the cytosol to the mitochondria, where it is preferentially localized to the site of organelle division [25]. DRP1
further promotes the Bax/Bak-induced cytochrome c release during apoptosis [26]. During mitochondrial fragmentation, apoptotic stimuli such as UV irradiation induced a decrease in cytoplasmic and mitochondrial DRP1 phosphorylation on Ser (637) and enhanced the interaction between DRP1 and MFF, while interaction between DRP1 and MiD51 decreased [27]. Thus, fission proteins are orchestrated to mediate the fission process during apoptosis.

OPA1 is involved in mitochondrial fusion and cristae remodeling, and they are functionally distinct processes; the latter is correlated with apoptotic cytochrome c release, which can be rescued by OPA1 overexpression [28]. Furthermore, the loss of OPA1 or the inhibition of mitochondrial fusion and the subsequent fragmentation of the mitochondrial network triggers cell death [28]. Bax and Bak are required for the physiological fusion of mitochondria from elongated mitochondria via the functional activity of OMM proteins including MFN1 and MFN2, which inhibit cytochrome c release, Bax translocation and the oligomerization induced by apoptotic stimuli [29].

Mitophagy is an organelle-specific process of elimination of damaged and depolarized mitochondria by selective ubiquitination, targeting autophagosomes via ubiquitin and microtubule-associated protein light chain 3α (LC3)-binding adaptor proteins, and the fusion of autophagosomes with lysosomes [30]. Parkin and phoshatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), which encode a cytosolic E3 ubiquitin-protein ligase and a mitochondrial serine/threonine-protein kinase, account for clinically similar autosomal recessive early-onset forms of Parkinson’s disease [31]. PINK1 and Parkin promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and Parkin-dependent mitophagy [32].

Diabetes, Obesity and Mitochondrial Dynamics

The accumulation of damaged or depolarized mitochondria in pancreatic β cells is associated with oxidative stress and the subsequent development of diabetes. Mitochondria in pancreatic β cells are continuously recruited in the fusion and fission processes [33]. In a cultured pancreatic β cell line (INS−1), high levels of glucose- and palmitate-induced mitochondrial fusion arrested and reduced respiratory function [34]. In INS1 cells, mitochondria with fission demonstrated reduced Δψ and decreased levels of the fusion protein OPA1. The inhibition of fission machinery proteins using DRP1 and FIS1 RNAi resulted in decreased mitochondrial autophagy, the accumulation of oxidized mitochondrial proteins, reduced respiration, and impaired insulin secretion, suggesting that selective fission of damaged mitochondria is followed by their removal by autophagy [35]. In another study, the beneficial aspects of fusion and mitochondrial networking were emphasized [36]. INS−1 cells were treated with palmitate and high glucose, and the fragmentation of mitochondria with reduced fusion activities was observed [36]. The application of FIS1 RNAi that shifts the dynamic balance to favor fusion is able to prevent mitochondrial fragmentation, maintain mitochondrial dynamics, and prevent apoptosis [36]. The roles of mitochondrial fusion and fission dynamics in the pancreatic β cells in animal models of diabetes [37] and the influence of insulin therapy [38] have not been fully explored, and more research is required to elucidate the significance of mitochondrial fusion and fission dynamics in the maintenance of pancreatic β cell function.

Obesity, type 2 diabetes, and aging are associated with impaired skeletal muscle oxidation, reduced mitochondrial contents, and lowered rates of OXPHOS [39]. Patients with type 2 diabetes and obesity demonstrated reduced expression of MFN2, which may be related to the reduced function of mitochondria in skeletal muscle [40]. In 17 obese subjects, 12 weeks of exercise improved insulin sensitivity and fat oxidation. Skeletal muscle biopsy demonstrated that decreased phosphorylation of DRP1 at serine 616 and the reduction of DRP1 Ser (616) phosphorylation were negatively correlated with increases in fat oxidation and insulin sensitivity [41]. In this study, there was a trend towards an increase in the expression of both MFN1 and MFN2 [41].

Recently, the role of MAMs has been highlighted in calcium, lipid, and metabolite exchange, although the ER and mitochondria play distinct cellular roles. Obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, reduced respiratory function, and augmented oxidative stress [42]. In contrast, Disrupting the integrity of MAMs by knocking out cyclophilin D leads to hepatic insulin resistance through the disruption of inter-organelle
Ca\(^{2+}\) transfer, ER stress, mitochondrial dysfunction, lipid accumulation, the activation of c-Jun N-terminal kinase and PKCe [43]. Although MAMs are new therapeutic targets for treating insulin resistance in the liver under obese states [44], the target molecules for pharmaceutical intervention and the relation between MAMs and the fusion/fission dynamics of mitochondria need to be explored in future studies.

Pharmaceuticals Targeting Mitochondrial Biogenesis

Various physiological conditions with increased energy demand and decreased energy supply, such as acute stress and starvation, favor mitochondrial elongation with respiration coupled with ATP synthesis, while conditions with decreased energy demand and increased supply are associated with mitochondrial fragmentation with decreased coupling [45]. Although lifestyle modification is the most fundamental therapy in patients with obesity and type 2 diabetes, pharmacological interventions targeting mitochondrial quality controls, including mitochondrial biogenesis and fusion and fission dynamics, are a promising area in the development of pharmaceuticals.

Various pharmacological activators of mitochondrial biogenesis such as AMPK activators, SIRT1 activators, nuclear receptor agonists, and cGMP modulators are beneficial for the treatment of obesity, type 2 diabetes, and vascular complications [5, 21]. Metformin is most commonly used in patients with type 2 diabetes; it was found to activate AMPK in skeletal muscle in rodents [46] and humans [46], and long-term administration of metformin was seen to increase the activity of PGC-1\(\alpha\) [4]. In addition, metformin activates AMPK in human umbilical vein endothelial cells and reduces hyperglycemia-induced mitochondrial ROS production and mitochondrial biogenesis [47]. 5-aminoimidazole-4-carboxamide riboside (AICAR) acts as an AMP analogue and stimulates the oxidative metabolism as an exercise mimic and also stimulates mitochondrial biogenesis [48]. However, AICAR demonstrates significant toxicity, as it can cause bradycardia and hypoglycemia [49].

Sirtuins are a family of protein deacetylase, and they are linked to mitochondrial biogenesis and mitochondrial function [21]. SIRT1 requires the oxidized coenzyme NAD\(^{+}\) and it deacetylates PGC-1\(\alpha\), coacti- vates various nuclear-encoded mitochondrial genes via the activation of transcription factors such as NRFs and PPARs [5]. Resveratrol, a SIRT1 activator, has been shown to enhance mitochondrial biogenesis and to be beneficial in ameliorating glycemic control and insulin resistance [50]. The therapeutic potential of resveratrol is limited by its lower bioavailability, and so synthetic small molecules such as SRT1720 were developed [51]. SRT1720 expands both the mean and maximum life spans of mice fed a high-fat diet and is associated with reduced liver steatosis, increased insulin sensitivity, and normalization of markers for inflammation and apoptosis [52].

Various nuclear receptor agonists targeting ERRs and PPARs have been evaluated for their potency to regulate mitochondrial biogenesis and metabolism [21]. Estrogen 17\(\beta\)-estradiol (E2) is involved in mitochondrial functions such as ATP production, the generation of membrane potential, and mitochondrial biogenesis [53]. However, the clinical application of estrogens is limited by their gynecological and tumor-promoting effects. The development of a glucagon-like peptide-1–estrogen conjugate improved energy, glucose and lipid metabolism without the side effects of estrogen such as reproductive toxicity and oncogenicity [54]. Pan-PPAR (\(\alpha\), \(\delta\), and \(\gamma\)) agonist bezafibrate was known to stimulate fatty acid oxidation and peroxisome proliferation, and it also regulates mitochondrial function via PPARs and PGC-1\(\alpha\). Bezafibrate simulates PGC-1\(\alpha\) expression, respiratory capacity, OXPHOS function, and mitochondrial DNA replication and biogenesis [55, 56]. PPAR\(\gamma\) agonists such as rosiglitazone and pioglitazone are used for patients with type 2 diabetes to regulate mitochondrial biogenesis and oxidative mechanisms [57].

Pharmaceuticals Targeting Mitochondrial Fusion and Fission

Recently, the interest in the development of mitochondria-related drugs has been directed to mitochondrial dynamics such as mitochondrial fusion, fission, and mitophagy [23]. Mitochondrial division inhibitor–1 (mdivi–1) inhibits mitochondrial fragmentation by selectively inhibiting the assembly and GTPase activity of DRP1 in yeast and mammalian cells [58]. Smaller and shorter mitochondria and increased mitochondrial fission machinery were observed in the
skeletal muscle of mice with genetic obesity and in those with diet-induced obesity, and the inhibition of mitochondrial fission improved the muscle insulin signaling and systemic insulin sensitivity [59]. Although short-term and acute inhibition of the fission process is beneficial, long-term inhibition may inhibit cell proliferation and bioenergetics in smooth muscle cells [60] and induce cancer-cell death [61, 62].

P110, a peptide inhibitor, reduces the enzyme activity of DRP1 and the interaction between DRP1 and FIS1 and inhibits aberrant mitochondrial fission [63]. P110 was found to be neuroprotective due to its ability to inhibit mitochondrial fission and ROS production and to the subsequent improvement in the mitochondrial membrane potential and mitochondrial integrity [63]. P110 is beneficial in neuronal diseases with mitochondrial dysfunction such as Parkinson’s disease [63, 64] and in brain ischemia and reperfusion injuries [65].

Dynasore is a dynamin GTPase inhibitor of endocytic pathways that is known to prevent the division or formation of dynamin-dependent endocytic vesicles. Pretreatment with dynasore prevented ischemia/reperfusion-induced elevation of diastolic pressure in the left ventricular end in Langendorff-perfused mouse hearts [66]. Dynasore protects against cardiac lusitropy and limits cell damage through a mechanism that maintains mitochondrial morphology and intracellular ATP in stressed cells [66].

A diterpenoid derivative, 15-oxospiramilactone (S3), is an inhibitor of mitochondria-associated deubiquitinase USP30 and increases non-degradative ubiquitination of MFN1 and MFN2, which promote mitochondrial fusion activity [67]. S3 is also known as an inhibitor of Wnt/β-catenin signaling, and it inhibits the tumorigenesis of colon cancer cells [68].

Although abnormalities in mitochondrial fusion and fission dynamics in obesity and type 2 diabetes were observed in previous studies, it remained unexplored whether therapeutic interventions using mdivi-1, P110, dynasore, and S3 were truly beneficial or not. We generated AP2-promotor-driven Timm44 transgenic mice and fed them high-fat, high-sucrose (HFHS) chow. Timm44 anchors mitochondrial heat-shock protein 70 (mtHsp70) to the translocase of the inner mitochondrial membrane 23 (TIM23) complex and facilitates the import of mitochondria-targeted preproteins into the mitochondrial matrix dependent on the inner membrane potential and ATP hydrolysis in the ATPase domain of mtHsp70 [69]. The adipocyte size in Timm44 Tg mice was reduced, and mitochondrial fusion associated with decreased expression of fission genes, such as Dnm1L and Fis1, was observed in Timm44 Tg mice fed HFHS chow [69].

Pharmaceuticals Targeting Mitophagy

Pharmacological approaches to enhancing or blocking the specific targeting of injured mitochondria, mitophagy, are attractive strategies in the treatment of diabetic vascular complications such as myocardial infarction [70] and diabetic nephropathy [71]. The mitochondria-localized BNIP3 interacts with the autophagosome-localized LC3, suggesting that BNIP3, similar to BNIP3L (NIX), functions as a LC3-binding receptor in mitochondria [72]. Drugs that interfere with the binding of the LC3–interacting region of BNIP3 could be used to block the specific degradation of mitochondria, which may help prevent excessive cardiac atrophy following mechanical loading [70]. BNIP3 may also be targeted to enhance mitophagy and recovery following myocardial ischemia and reperfusion injuries [70]. The specific activation of Parkin/PINK1-mediated mitophagy may be beneficial in myocardial ischemia with fewer off-target effects [70].

The impairment of autophagy/mitophagy is a feature of diabetic nephropathy, and various compounds which inhibit the autophagy/mitophagy process have been identified, such as sirolimus (rapamycin), a mammalian target of rapamycin (mTOR) complex inhibitor [71]. Rapamycin protects against renal hypertrophy [73], glomerulosclerosis and proteinuria [74, 75], and mesangial expansion in rodent models [75, 76]. The beneficial effects of the specific activation of mitophagy by the BNIP3 or Parkin/PINK1 pathways in diabetic nephropathy have not yet been reported.

Conclusion

Mitochondrial biogenesis and the fusion process are impaired in diabetes and obesity, and they are promising pharmaceutical targets. For the stimulation of mitochondrial biogenesis, thiazolidinediones, fibrates, metformin, SRT1720, and rapamycin are good candidates. The inhibition of the fission process by Mdivi-1, P110, dynasore, and S3 is beneficial to shift the
mitochondria to fusion states, and it represents a future therapeutic strategy for the treatment of diabetes and obesity.

References

27. Zhang Z, Liu L, Wu S and Xing D: Drp1, Mif1, Fis1, and MID51 are coordinated to mediate mitochondrial fission during UV irradiation-induced apoptosis. FASEB J (2016) 30: 466–476.

