
Mitochondrial Dynamics and Mitochondrial  
Dysfunction in Diabetes

Jun Wada＊,  and Atsuko Nakatsuka

Department of Nephrology,  Rheumatology,  Endocrinology and Metabolism,  Okayama University Graduate School of Medicine,   
Dentistry and Pharmaceutical Sciences,  Okayama 700-8558,  Japan

The mitochondria are involved in active and dynamic processes,  such as mitochondrial biogenesis,  
fission,  fusion and mitophagy to maintain mitochondrial and cellular functions.  In obesity and type 2 
diabetes,  impaired oxidation,  reduced mitochondrial contents,  lowered rates of oxidative phosphory-
lation and excessive reactive oxygen species (ROS) production have been reported.  Mitochondrial bio-
genesis is regulated by various transcription factors such as peroxisome proliferator-activated recep-
tor γ coactivator-1α (PGC-1α),  peroxisome proliferator-activated receptors (PPARs),  estrogen-related 
receptors (ERRs),  and nuclear respiratory factors (NRFs).  Mitochondrial fusion is promoted by 
mitofusin 1 (MFN1),  mitofusin 2 (MFN2) and optic atrophy 1 (OPA1),  while fission is governed by the 
recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission 
factor (MFF),  mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51),  and fission 1 
(FIS1).  Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN pro-
mote DRP1-dependent mitochondrial fission,  and the outer mitochondrial adaptor MiD51 is required in 
DRP1 recruitment and PARKIN-dependent mitophagy.  This review describes the molecular mecha-
nism of mitochondrial dynamics,  its abnormality in diabetes and obesity,  and pharmaceuticals target-
ing mitochondrial biogenesis,  fission,  fusion and mitophagy.
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M itochondria efficiently produce cellular ATP 
and determine the ATP availability in the cell,  

since they are a major site for the generation of ATP.  
Mitochondrial dysfunction contributes to the develop-
ment of age-dependent insulin resistance [1],  since 
mitochondrial capacity has been considered to be a 
good indicator of insulin sensitivity [2].  In addition to 
their role as the ʻpower houseʼ of the cell,  mitochon-
dria are involved in the regulation of the energy bal-
ance through the induction of mitochondrial biogenesis.  
Calorie restriction and exercise result in increases in 

the NAD＋/NADH and AMP/ATP ratios,  respectively.  
Sirtuin (SIRT) 1/3 which requires NAD＋ as the 
nucleotide is a co-substrate and activates peroxisome 
proliferator-activated receptor (PPAR) γ coactiva-
tor-1α (PGC-1α) by deacetylation [3].  The increase 
in the AMP/ATP ratio directly activates AMP-
activated kinase (AMPK) and further activates the 
PGC-1α through phosphorylation [4].  The phosphoryl-
ated and deacetylated PGC-1α co-activates nuclear-
encoded nuclear genes via transcription factors such 
as the nuclear translocation of nuclear respiratory 
factor (NRF) 1/2,  estrogen-related receptor (ERR) α,  
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β,  γ,  and PPAR α,  β,  γ [5].  These transcription 
factors activate mtDNA transcription,  translation and 
replication,  the production of oxidative phosphoryla-
tion (OXPHOS) subunits,  and tricarboxylic acid 
(TCA) cycle enzymes and fatty acid oxidation enzymes,  
which leads to increased mitochondrial biogenesis 
[5].
　 In patients with diabetes,  hyperglycemia induces 
intracellular glucose oxidation generating NADH and 
pyruvate,  and enhances the influx of pyruvate into the 
mitochondria.  Pyruvate is oxidized by the TCA cycle 
to produce NADH and FADH2,  which donate elec-
trons that flow through the mitochondrial electron 
transport chain formed by inner-membrane-associated 
enzyme complexes.  If the electrochemical potential 
difference is too high under high-glucose conditions,  
reactive oxygen species (ROS) are demonstrated to be 
generated at complex I and the interface between 
ubiquinone and complex III.  The inhibitor of complex 
II,  manganese superoxide dismutase (SOD),  and 
uncoupling protein-1 (UCP-1) prevent the high-glu-
cose-induced ROS production in bovine endothelial 
cells and inhibit the subsequent activation of protein 
kinase C (PKC),  the formation of advanced glycation 
end-products (AGEs),  sorbitol accumulation,  and 
nuclear factor-kappa B (NFκB) activation [6,  7].  
However,  recently,  a new concept in the understand-
ing of diabetic complications,  ʻmitochondrial horme-
sisʼ,  was presented [8,  9].  In response to excess 
glucose exposure or nutrient stress,  there is a reduc-
tion in mitochondrial superoxide,  oxidative phos-
phorylation,  and mitochondrial ATP generation in 
several tissues targeted in diabetes complications [8].  
The continuous reduction of mitochondrial function is 
linked to the overproduction of oxidants from non-
mitochondrial sources and the release of proinflamma-
tory and profibrotic cytokines [9].  The series of evi-
dence suggested that the activation of AMPK,  
SIRT1/3 and PGC-1α increased the mitochondrial 
capacity for OXPHOS,  restoration of physiologic 
mitochondrial superoxide production,  which is benefi-
cial for insulin secretion by pancreatic β cells,  insulin 
sensitivity in skeletal muscle and liver,  and preven-
tion of micro- and macro-vascular complications in 
diabetes [8].
　 Quality control of the mitochondria is critical for 
the maintenance of mitochondrial function,  and dys-
function of the mitochondria plays critical roles in the 

development of diabetes and obesity.  Mitochondria are 
reticular organelles that have high plasticity in their 
dynamic structures and constantly undergo fusion and 
fission processes; this plasticity is important for the 
quality control of mitochondria [10].  In this review,  
abnormalities in the mitochondrial fusion and fission 
dynamics,  mitophagy in diabetes,  and the significance 
of mitochondria as a therapeutic target is highlighted.

Mitochondrial Fusion and Fission Dynamics

　 Once close contact between mitochondria is estab-
lished,  the dynamin-related outer mitochondrial mem-
brane (OMM) proteins mitofusin 1 (MFN1) and mito-
fusin 2 (MFN2) form homotypic (MFN1-MFN1 and 
MFN2-MFN2) or heterotypic (MFN1-MFN2) com-
plexes [11].  After tethering,  inner mitochondrial 
membrane (IMM) fusion is mediated by optic atrophy 
1 (OPA1) depending on the inner membrane potential 
[12].  The process of fusion retains the capacity of the 
mitochondria and maintains genetic and biochemical 
homogeneity by allowing the dilution of superoxide 
species and mutated DNA and the repolarization of 
membranes [13].  Fission,  a division process that 
produces one or more daughter mitochondria,  requires 
cytosolic dynamin-related protein 1 (DRP1).  Mito-
chondria-associated endoplasmic reticulum (ER) mem-
branes (MAMs) function as membrane contact sites 
between the ER and mitochondria.  These ER-mito-
chondria contact sites have emerged as major players 
in lipid metabolism,  calcium signaling,  autophagy and 
mitochondrial dynamics [14].  The mitochondria con-
striction and division occur at ER contact sites [15].  
Multiple receptors recruit DRP1 to the mitochondria,  
including four mitochondrially localized adaptor 
proteins: mitochondrial fission factor (MFF) [16],  
mitochondrial dynamics proteins of 49 and 51kDa 
(MiD49 and MiD51) [17,  18],  and fission 1 (FIS1) 
[19].  The assembly of DRP1 dimers and oligomers 
forms a helical structure,  and DRP1 hydrolyzes GTP 
and divides the mitochondria by constriction.  So far,  
no mammalian inner membrane fission machinery has 
been identified [20] (Fig.  1).

Mitochondrial Biogenesis

　 The generation of new mitochondria,  mitochondrial 
biogenesis,  is distinct from mitochondrial fission,  and 
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the former involves the complete replication of mito-
chondrial DNA.  Mitochondrial biogenesis is driven by 
the transcriptional activator of NRF-1,  NRF-2,  
PGC-1α,  which is activated by various pathways such 
as receptor tyrosine kinases,  natriuretic peptide 
receptors and nitric oxide through the generation of 
cGMP: the activation of AMPK,  Akt,  SIRT1-
mediated acetylation,  PPARs,  and ERRs [21].  The 
expressions of nuclear-encoded mitochondrial genes 
are actively transcribed,  and the proteins with mito-
chondrial target sequences including the enzymes of 
the TCA cycle and OXPHOS,  antioxidant enzymes,  
and mitochondrial transcription factor A (TFAM) are 
imported via translocase of the OMM and IMM com-
plexes (TOM and TIM) into the mitochondria.  In type 

2 diabetes,  the expressions of PGC-1α and its tar-
geted genes are reduced,  and they are associated with 
an impaired ability to produce mitochondrial ATP 
[22] and increased ROS production from the electron 
transport chain [6].  Thus,  the activation of mitochon-
drial biogenesis by pharmacological activation target-
ing these molecules seems to be beneficial in the 
treatment of type 2 diabetes and obesity [23,  24].

Apoptosis and Mitophagy

　 Upon the induction of apoptosis,  the OMM is 
fragmented by the translocation of DRP1 from the 
cytosol to the mitochondria,  where it is preferentially 
localized to the site of organelle division [25].  DRP1 

153Mitochondria and DiabetesJune 2016

Exercise
Calorie

restriction 

AMP/ATP↑ NAD+/NADH↑

PGC-1α

AMPK NAMPT SIRT1
SIRT3

PGC-1α

ecNOS

NO
Soluble guanylate

cyclase 
cGMP

NRF1 
NRF2 Nuclear-encoded mitochondrial proteins 

TCA cycle and OXPHOS enzymes
Antioxidants

TFAM
TOMs and TIMs

TIMs

TOMs

TZDs
Fibrates

MFN1/2

OPA1

DRP1

MITOCHONDRIAL
BIOGENESIS 

MITOCHONDRIAL
FUSION 

MITOCHONDRIAL
FISSION 

FIS1

PINK1

Parkin

UB-
UB-

LC3

p62

MITOPHAGY

PPARs
ERRs

Depolarized
and damaged
mitochondria 

ROS

NRF1 NRF2

Resveratrol
SRT1720

AICAR
Metformin
TZDs

Mdivi-1, P110, 
Dynasore, S3

Calorie
excess

mTOR
Rapamycin

AC

PGC-1α
P

PGC-1α
PAC

Fig. 1　 Mitochondrial biogenesis,  fission,  fusion,  and mitophagy.  AICAR (5-aminoimidazole-4-carboxamide riboside),  AMPK (AMP-activated 
kinase),  DRP1 (dynamin-related protein 1),  ecNOS (nitric oxide synthase 3),  ERRs (estrogen-related receptors),  FIS1 (fission 1),  LC3 (microtubule-
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further promotes the Bax/Bak-induced cytochrome c 
release during apoptosis [26].  During mitochondrial 
fragmentation,  apoptotic stimuli such as UV irradia-
tion induced a decrease in cytoplasmic and mitochon-
drial DRP1 phosphorylation on Ser (637) and enhanced 
the interaction between DRP1 and MFF,  while inter-
action between DRP1 and MiD51 decreased [27].  
Thus,  fission proteins are orchestrated to mediate the 
fission process during apoptosis.
　 OPA1 is involved in mitochondrial fusion and 
cristae remodeling,  and they are functionally distinct 
processes; the latter is correlated with apoptotic 
cytochrome c release,  which can be rescued by OPA1 
overexpression [28].  Furthermore,  the loss of OPA1 
or the inhibition of mitochondrial fusion and the sub-
sequent fragmentation of the mitochondrial network 
triggers cell death [28].  Bax and Bak are required 
for the physiological fusion of mitochondria from 
elongated mitochondria via the functional activity of 
OMM proteins including MFN1 and MFN2,  which 
inhibit cytochrome c release,  Bax translocation and 
the oligomerization induced by apoptotic stimuli [29].
　 Mitophagy is an organelle-specific process of elimi-
nation of damaged and depolarized mitochondria by 
selective ubiquitination,  targeting autophagosomes via 
ubiquitin and microtubule-associated protein light 
chain 3α (LC3)-binding adaptor proteins,  and the 
fusion of autophagosomes with lysosomes [30].  Parkin 
and phosphatase and tensin homolog (PTEN)-induced 
putative kinase 1 (PINK1),  which encode a cytosolic 
E3 ubiquitin-protein ligase and a mitochondrial ser-
ine/threonine-protein kinase,  account for clinically 
similar autosomal recessive early-onset forms of 
Parkinsonʼs disease [31].  PINK1 and Parkin promote 
DRP1-dependent mitochondrial fission,  and the outer 
mitochondrial adaptor MiD51 is required in DRP1 
recruitment and Parkin -dependent mitophagy [32].

Diabetes, Obesity and Mitochondrial Dynamics

　 The accumulation of damaged or depolarized mito-
chondria in pancreatic β cells is associated with oxida-
tive stress and the subsequent development of diabe-
tes.  Mitochondria in pancreatic β cells are continuously 
recruited in the fusion and fission processes [33].  In 
a cultured pancreatic β cell line (INS-1),  high levels 
of glucose- and palmitate-induced mitochondrial fusion 
arrested and reduced respiratory function [34].  In 

INS1 cells,  mitochondria with fission demonstrated 
reduced Δψ and decreased levels of the fusion protein 
OPA1.  The inhibition of fission machinery proteins 
using DRP1 and FIS1 RNAi resulted in decreased 
mitochondrial autophagy,  the accumulation of oxidized 
mitochondrial proteins,  reduced respiration,  and 
impaired insulin secretion,  suggesting that selective 
fission of damaged mitochondria is followed by their 
removal by autophagy [35].  In another study,  the 
beneficial aspects of fusion and mitochondrial network-
ing were emphasized [36].  INS-1 cells were treated 
with palmitate and high glucose,  and the fragmenta-
tion of mitochondria with reduced fusion activities was 
observed [36].  The application of FIS1 RNAi that 
shifts the dynamic balance to favor fusion is able to 
prevent mitochondrial fragmentation,  maintain mito-
chondrial dynamics,  and prevent apoptosis [36].  The 
roles of mitochondrial fusion and fission dynamics in 
the pancreatic β cells in animal models of diabetes 
[37] and the influence of insulin therapy [38] have not 
been fully explored,  and more research is required to 
elucidate the significance of mitochondrial fusion and 
fission dynamics in the maintenance of pancreatic β cell 
function.
　 Obesity,  type 2 diabetes,  and aging are associated 
with impaired skeletal muscle oxidation,  reduced 
mitochondrial contents,  and lowered rates of OXPHOS 
[39].  Patients with type 2 diabetes and obesity dem-
onstrated reduced expression of MFN2,  which may be 
related to the reduced function of mitochondria in 
skeletal muscle [40].  In 17 obese subjects,  12 weeks 
of exercise improved insulin sensitivity and fat oxida-
tion.  Skeletal muscle biopsy demonstrated that 
decreased phosphorylation of DRP1 at serine 616 and 
the reduction of DRP1 Ser (616) phosphorylation 
were negatively correlated with increases in fat oxida-
tion and insulin sensitivity [41].  In this study,  there 
was a trend towards an increase in the expression of 
both MFN1 and MFN2 [41].
　 Recently,  the role of MAMs has been highlighted 
in calcium,  lipid,  and metabolite exchange,  although 
the ER and mitochondria play distinct cellular roles.  
Obesity leads to a marked reorganization of MAMs 
resulting in mitochondrial calcium overload,  reduced 
respiratory function,  and augmented oxidative stress 
[42].  In contrast,  Disrupting the integrity of MAMs 
by knocking out cyclophilin D leads to hepatic insulin 
resistance through the disruption of inter-organelle 
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Ca2＋ transfer,  ER stress,  mitochondrial dysfunction,  
lipid accumulation,  the activation of c-Jun N-terminal 
kinase and PKCε [43].  Although MAMs are new 
therapeutic targets for treating insulin resistance in 
the liver under obese states [44],  the target molecules 
for pharmaceutical intervention and the relation 
between MAMs and the fusion/fission dynamics of 
mitochondria need to be explored in future studies.

Pharmaceuticals Targeting Mitochondrial 
Biogenesis

　 Various physiological conditions with increased 
energy demand and decreased energy supply,  such as 
acute stress and starvation,  favor mitochondrial elon-
gation with respiration coupled with ATP synthesis,  
while conditions with decreased energy demand and 
increased supply are associated with mitochondrial 
fragmentation with decreased coupling [45].  Although 
life style modification is the most fundamental therapy 
in patients with obesity and type 2 diabetes,  pharma-
cological interventions targeting mitochondrial quality 
controls,  including mitochondrial biogenesis and fusion 
and fission dynamics,  are a promising area in the 
development of pharmaceuticals.
　 Various pharmacological activators of mitochon-
drial biogenesis such as AMPK activators,  SIRT1 
activators,  nuclear receptor agonists,  and cGMP 
modulators are beneficial for the treatment of obesity,  
type 2 diabetes,  and vascular complications [5,  21].  
Metformin is most commonly used in patients with type 
2 diabetes; it was found to activate AMPK in skeletal 
muscle in rodents [46] and humans [46],  and long-term 
administration of metformin was seen to increase the 
activity of PGC-1α [4].  In addition,  metformin 
activates AMPK in human umbilical vein endothelial 
cells and reduces hyperglycemia-induced mitochondrial 
ROS production and mitochondrial biogenesis [47].  
5-aminoimidazole-4-carboxamide riboside (AICAR) 
acts as an AMP analogue and stimulates the oxidative 
metabolism as an exercise mimetic and also stimulates 
mitochondrial biogenesis [48].  However,  AICAR 
demonstrates significant toxicity,  as it can cause bra-
dycardia and hypoglycemia [49].
　 Sirtuins are a family of protein deacetylase,  and 
they are linked to mitochondrial biogenesis and mito-
chondrial function [21].  SIRT1 requires the oxidized 
coenzyme NAD＋ and it deacetylates PGC-1α,  coacti-

vates various nuclear-encoded mitochondrial genes via 
the activation of transcription factors such as NRFs 
and PPARs [5].  Resveratrol,  a SIRT1 activator,  has 
been shown to enhance mitochondrial biogenesis and to 
be beneficial in ameliorating glycemic control and 
insulin resistance [50].  The therapeutic potential of 
resveratrol is limited by its lower bioavailability,  and 
so synthetic small molecules such as SRT1720 were 
developed [51].  SRT1720 expands both the mean and 
maximum life spans of mice fed a high-fat diet and is 
associated with reduced liver steatosis,  increased 
insulin sensitivity,  and normalization of markers for 
inflammation and apoptosis [52].
　 Various nuclear receptor agonists targeting ERRs 
and PPARs have been evaluated for their potency to 
regulate mitochondrial biogenesis and metabolism 
[21].  Estrogen 17β-estradiol (E2) is involved in 
mitochondrial functions such as ATP production,  the 
generation of membrane potential,  and mitochondrial 
biogenesis [53].  However,  the clinical application of 
estrogens is limited by their gynecological and tumor-
promoting effects.  The development of a glucagon-like 
peptide-1-estrogen conjugate improved energy,  glu-
cose and lipid metabolism without the side effects of 
estrogen such as reproductive toxicity and oncogenic-
ity [54].  Pan-PPAR (α,  δ,  and γ) agonist bezafibrate 
was known to stimulate fatty acid oxidation and peroxi-
some proliferation,  and it also regulates mitochon-
drial function via PPARs and PGC-1α.  Bezafibrate 
simulates PGC-1α expression,  respiratory capacity,  
OXPHOS function,  and mitochondrial DNA replica-
tion and biogenesis [55,  56].  PPARγ agonists such 
as rosiglitazone and pioglitazone are used for patients 
with type 2 diabetes to regulate mitochondrial biogen-
esis and oxidative mechanisms [57].

Pharmaceuticals Targeting Mitochondrial 
Fusion and Fission

　 Recently,  the interest in the development of mito-
chondria-related drugs has been directed to mitochon-
drial dynamics such as mitochondrial fusion,  fission,  
and mitophagy [23].  Mitochondrial division inhibi-
tor-1 (mdivi-1) inhibits mitochondrial fragmentation 
by selectively inhibiting the assembly and GTPase 
activity of DRP1 in yeast and mammalian cells [58].  
Smaller and shorter mitochondria and increased 
mitochondrial fission machinery were observed in the 
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skeletal muscle of mice with genetic obesity and in 
those with diet-induced obesity,  and the inhibition of 
mitochondrial fission improved the muscle insulin sig-
naling and systemic insulin sensitivity [59].  Although 
short-term and acute inhibition of the fission process 
is beneficial,  long-term inhibition may inhibit cell 
proliferation and bioenergics in smooth muscle cells 
[60] and induce cancer-cell death [61,  62].
　 P110,  a peptide inhibitor,  reduces the enzyme 
activity of DRP1 and the interaction between DRP1 
and FIS1 and inhibits aberrant mitochondrial fission 
[63].  P110 was found to be neuroprotective due to its 
ability to inhibit mitochondrial fission and ROS pro-
duction and to the subsequent improvement in the 
mitochondrial membrane potential and mitochondrial 
integrity [63].  P110 is beneficial in neuronal diseases 
with mitochondrial dysfunction such as Parkinsonʼs 
disease [63,  64] and in brain ischemia and reperfu-
sion injuries [65].
　 Dynasore is a dynamin GTPase inhibitor of endo-
cytic pathways that is known to prevent the division or 
formation of dynamin-dependent endocytic vesicles.  
Pretreatment with dynasore prevented ischemia/
reperfusion-induced elevation of diastolic pressure in 
the left ventricular end in Langendorff-perfused mouse 
hearts [66].  Dynasore protects against cardiac lus-
itropy and limits cell damage through a mechanism 
that maintains mitochondrial morphology and intracel-
lular ATP in stressed cells [66].
　 A diterpenoid derivative,  15-oxospiramilactone 
(S3),  is an inhibitor of mitochondria-associated deu-
biquitinase USP30 and increases non-degradative 
ubiquitination of MFN1 and MFN2,  which promote 
mitochondrial fusion activity [67].  S3 is also known 
as an inhibitor of Wnt/β-catenin signaling,  and it 
inhibits the tumorigenesis of colon cancer cells [68].
　 Although abnormalities in mitochondrial fusion and 
fission dynamics in obesity and type 2 diabetes were 
observed in previous studies,  it remained unexplored 
whether therapeutic interventions using mdivi-1,  
P110,  dynasore,  and S3 were truly beneficial or not.  
We generated AP2-promotor-driven Timm44 trans-
genic mice and fed them high-fat,  high-sucrose (HFHS) 
chow.  Timm44 anchors mitochondrial heat-shock 
protein 70 (mtHsp70) to the translocase of the inner 
mitochondrial membrane 23 (TIM23) complex and 
facilitates the import of mitochondria-targeted prepro-
teins into the mitochondrial matrix dependent on the 

inner membrane potential and ATP hydrolysis in the 
ATPase domain of mtHsp70 [69].  The adipocyte size 
in Timm44 Tg mice was reduced,  and mitochondrial 
fusion associated with decreased expression of fission 
genes,  such as Dnm1l and Fis1,  was observed in 
Timm44 Tg mice fed HFHS chow [69].

Pharmaceuticals Targeting Mitophagy

　 Pharmacological approaches to enhancing or block-
ing the specific targeting of injured mitochondria,  
mitophagy,  are attractive strategies in the treatment 
of diabetic vascular complications such as myocardial 
infarction [70] and diabetic nephropathy [71].  The 
mitochondria-localized BNIP3 interacts with the 
autophagosome-localized LC3,  suggesting that BNIP3,  
similar to BNIP3L (NIX),  functions as a LC3-binding 
receptor in mitochondria [72].  Drugs that interfere 
with the binding of the LC3-interacting region of 
BNIP3 could be used to block the specific degradation 
of mitochondria,  which may help prevent excessive 
cardiac atrophy following mechanical loading [70].  
BNIP3 may also be targeted to enhance mitophagy and 
recovery following myocardial ischemia and reperfu-
sion injuries [70].  The specific activation of Parkin/
PINK1-mediated mitophagy may be beneficial in myo-
cardial ischemia with fewer off-target effects [70].
　 The impairment of autophagy/mitophagy is a fea-
ture of diabetic nephropathy,  and various compounds 
which inhibit the autophagy/mitophagy process have 
been identified,  such as sirolimus (rapamycin),  a mam-
malian target of rapamycin (mTOR) complex inhibitor 
[71].  Rapamycin protects against renal hypertrophy 
[73],  glomerulosclerosis and proteinuria [74,  75],  
and mesangial expansion in rodent models [75,  76].  
The beneficial effects of the specific activation of 
mitophagy by the BNIP3 or Parkin/PINK1 pathways 
in diabetic nephropathy have not yet been reported.

Conclusion

　 Mitochondrial biogenesis and the fusion process are 
impaired in diabetes and obesity,  and they are promis-
ing pharmaceutical targets.  For the stimulation of 
mitochondrial biogenesis,  thiazolidinediones,  fibrates,  
metformin,  SRT1720,  and rapamycin are good candi-
dates.  The inhibition of the fission process by Mdivi-1,  
P110,  dynasore,  and S3 is beneficial to shift the 
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mitochondria to fusion states,  and it represents a 
future therapeutic strategy for the treatment of diabe-
tes and obesity.
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