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Graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell 
transplantation.  Chronic GVHD often presents with clinical manifestations that resemble those 
observed in autoimmune diseases.  Standard treatment is 1-2mg/kg/day of prednisone or an equiva-
lent dose of methylprednisolone,  with continued administration of a calcineurin inhibitor for steroid 
sparing.  However,  the prognosis of steroid-refractory chronic GVHD remains poor.  Classically,  
chronic GVHD was said to involve predominantly Th2 responses.  We are now faced with a more 
complex picture,  involving possible roles for thymic dysfunction,  transforming growth factor-β 
(TGF-β) and platelet-derived growth factor (PDGF),  B cells and autoantibodies,  and Th1/Th2/Th17 
cytokines,  as well as regulatory T cells (Tregs),  in chronic GVHD.  More detailed research on the 
pathophysiology of chronic GVHD may facilitate the establishment of novel strategies for its preven-
tion and treatment.
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llogeneic hematopoietic stem cell transplanta-
tion (HSCT) is a curative modality in a sub-

stantial number of patients with hematological malig-
nancies,  bone marrow failure,  immunodeficiency 
syndromes,  and certain congenital metabolic disorders 
[1].  However,  allogeneic HSCT is frequently compli-
cated by graft-versus-host disease (GVHD).  Based on 
differences in clinical manifestations and histopathol-
ogy,  GVHD can be divided into acute and chronic types.
　 The clinical manifestations of acute GVHD occur 
in the skin,  gastrointestinal tract,  and liver.  Several 
convergent lines of experimental data have demon-
strated that donor T cells and donor and/or host 

antigen-presenting cells (APCs) are important in the 
induction of acute GVHD [2-6].  Additionally,  a 
growing body of data suggests that donor T-cell sub-
sets,  such as T-helper (Th) cells,  CD8+ T cells [7,  
8],  natural killer (NK) cells [9],  NKT cells [10],  
and γδT cells [11],  are involved in the pathogenesis 
of acute GVHD.
　 Chronic GVHD is a major cause of late death and 
morbidity after allogeneic HSCT [12-14].  Although 
half of patients respond to first-line treatment,  the 
prognosis of steroid-refractory chronic GVHD remains 
poor [15].  Initially,  chronic GVHD was considered 
to be a Th2-mediated disease,  based on results from 
the non-irradiated parent→F1 mouse model.  Chronic 
GVHD in this model is mediated by autoantibody 
production by host B cells stimulated by donor Th2 
cells.  Th1 polarization in donor T cells activates 
donor CD8+ CTLs to kill host B cells,  resulting in 
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amelioration of chronic GVHD [16].  However,  
chronic GVHD has not fit neatly into the Th2 para-
digm [17].  Recent studies have suggested that 
chronic GVHD may be caused by cytokines secreted by 
Th1 cells [18],  Th17 cells [19],  and/or autoantibod-
ies [20].  However,  the immune mechanisms leading 
to the development of chronic GVHD are still not 
completely understood.  Moreover,  evidence in steroid-
refractory chronic GVHD is limited.
　 In this review,  we outline treatments for chronic 
GVHD and discuss the pathophysiology of chronic 
GVHD,  focusing on five aspects: (a) thymic dysfunc-
tion,  (b) profibrotic growth factors (transforming growth 
factor-β (TGF-β) and platelet-derived growth factor 
(PDGF)),  (c) regulatory T cells (Tregs),  (d) B cells 
and autoantibodies,  and (e) Th1/Th2/Th17 cytokines.  
Finally,  we present a new strategy for the treatment 
of chronic GVHD using the synthetic retinoid Am80,  
which targets Th1 and Th17.

Clinical Significance of Chronic GVHD

　 Chronic GVHD often presents with clinical mani-
festations that resemble those observed in autoimmune 
diseases,  such as systemic lupus erythematosus,  
Sjögrenʼs syndrome,  lichen planus,  and scleroderma 
[21].  Onset usually occurs more than 100 days after 
HSCT [22].  The pathophysiology of chronic GVHD 
is complex and resembles,  to some degree,  the 
pathophysiology of autoimmune diseases,  since it 
involves donor-derived auto-reactive T cell responses 
to host alloantigens.  The consensus is that mild chronic 
GVHD can be treated with topical immunosuppressive 

agents or with systemic steroids alone as a first-line 
therapy [23].  Treatment of moderate-to-severe chronic 
GVHD requires systemic immunosuppression.  
Standard treatment is 1-2mg/kg/day prednisone or an 
equivalent dose of methylprednisolone with continued 
administration of a calcineurin inhibitor for steroid 
sparing [23].  The response rate to steroids is ～50- 
60ｵ,  but the prognosis of steroid-refractory chronic 
GVHD remains poor [24].
　 Numerous clinical trials have evaluated approaches 
to secondary treatment of chronic GVHD.  To date,  no 
consensus regarding the optimal choice of agents for 
secondary treatment has been reached,  and clinical 
management is generally approached through empirical 
trial and error.  Table 1 shows the reported data for 
the secondary treatment of chronic GVHD [25-34].  
Response rates are 26-86ｵ,  but the studies providing 
these data were limited almost exclusively to phase II 
trials or retrospective analyses.  Thus,  treatment of 
steroid-refractory chronic GVHD remains a challenge.

Biology

　 Thymic dysfunction. Within the thymus,  T 
cells undergo positive and negative selection.  In nega-
tive selection,  self-reactive T cells are eliminated,  
which is called “central tolerance.” Positive selection 
is mediated by the thymic cortical epithelium,  while 
negative selection,  via clonal deletion,  is mediated 
primarily by thymic dendritic cells (DCs).  In the acute 
phase,  donor-derived mature T cells expanding in a 
thymus-independent manner in recipients are respon-
sible for the development of GVHD,  because T-cell 
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Table 1　 Response rates in prior second-line treatment for chronic GVHD

Author　　　　 [ref.] (published year) Treatment n RR (%)

Gilman et al. [25] (2000) hydroxychloroquine 40 53
Browne et al. [26] (2000) thalidomide 37 38
Akpek et al. [27] (2001) steroid pulse 61 76
Flowers et al. [28] (2008) ECP 48 40
Olivieri et al. [29] (2009) imatinib 19 79
Furlong et al. [30] (2009) MMF 42 26
Kim et al. [31] (2010) rituximab 37 86
Jedlickova et al. [32] (2010) mTOR inhibitor 19 74
Weng et al. [33] (2010) MSCs 19 74
Pidala et al. [34] (2010) pentostatin 18 56

ref,  reference; n,  patient number; RR,  response rate; ECP,  extracorporeal photopheresis; MMF,  Mycophenolate mofetil; mTOR,  mam-
mallian target of rapamycin; MSCs,  mesenchymal stem cells.



depletion of the donor bone marrow reduces rates of 
acute GVHD in mice and humans [35,  36].  However,  
in the late phase,  T cells generated de novo from donor-
derived hematopoietic stem cells via the recipientʼs 
thymus play an important role in chronic GVHD 
pathophysiology.  Although peripheral T cells gener-
ated in the recipientʼs thymus should not attack self 
antigen-expressing tissues,  they seem to include a 
minor population that is potentially harmful to recipi-
ents.  Indeed,  Sakoda et al.  showed that impaired 
thymic negative selection of the recipients allowed the 
emergence of autoreactive T cells and caused chronic 
GVHD,  even in the presence of functional Tregs,  in 
a study using a thymectomized mouse model [37].  
Keratinocyte growth factor (KGF) treatment improves 
the restoration of thymic DCs and prevents the de novo 
generation of pathogenic CD4+ T cells causing chronic 
GVHD [38],  suggesting that protection of the thymus 
may contribute to improvement in chronic GVHD.  
Although palifermin,  a recombinant human KGF that 
may protect the host thymus,  had no significant effect 
in acute GVHD [39],  the efficacy of palifermin treat-
ment for chronic GVHD has not been examined.  
Further experiments and clinical studies will be 
needed to assess the role of the thymus as a target of 
chronic GVHD treatment.
　 Contribution of TGF-β and PDGF pathways.
TGF-β is a pleiotropic cytokine that affects multiple 
cell lineages by promoting or opposing their differen-
tiation,  survival,  and proliferation.  Increased total 
plasma TGF-β1 levels correlate well with the subse-
quent development of liver and lung fibrosis [40,  41].  
Chronic GVHD is also characterized by fibrotic 
changes in the skin,  and it is conceivable that TGF-β1 
also plays a role.  In a mouse model of chronic GVHD,  
TGF-β has been causally related to the development 
of sclerodermatous skin changes [42,  43].  In humans,  
TGF-β1 levels are increased significantly during 
chronic GVHD [44].  However,  in gene expression 
analyses,  donors whose recipient did not develop 
chronic GVHD showed higher levels of activating 
components of the TGF-β signaling pathway (EP300,  
FNBP3,  FURIN,  SMAD3) and of genes induced by 
TGF-β (TGFBI,  TGIF) but lower expression of PRF1,  
which is repressed by TGF-β,  compared with those 
who developed chronic GVHD [45].  Moreover,  TGF-
β plays an important role in the generation and main-
tenance of Tregs in the periphery and enhancement of 

their suppressive function [46].  Thus,  the in vivo role 
of TGF-β in chronic GVHD could be complex.
　 Members of the platelet-derived growth factor 
(PDGF) family play important roles during embryonic 
development and contribute to the maintenance of con-
nective tissue in adults [47].  Deregulation of PDGF 
signaling has been linked to atherosclerosis,  pulmo-
nary hypertension,  and organ fibrosis.  Stimulatory 
antibodies to the PDGF receptor (PDGFR) recog-
nized native PDGFR,  inducing tyrosine phosphoryla-
tion,  reactive oxygen species accumulation,  stimula-
tion of type I collagen gene expression,  and myofibroblast 
phenotype conversion in normal human primary fibro-
blasts,  resulting in sclerosis [48].  Moreover,  such 
stimulatory antibodies were found in all patients with 
scleroderma [48].  These reported findings suggest 
that acceleration of the PDGF pathway may result in 
autoimmune effects.  Indeed,  stimulatory antibodies to 
the PDGFR were found selectively in all patients with 
extensive chronic GVHD,  but in none of those without 
the condition [49],  suggesting that the PDGF path-
way is associated with chronic GVHD pathogenesis.
　 The tyrosine kinase inhibitor imatinib mesylate,  
which inhibits the constitutively active fusion gene bcr-
abl,  is widely used in the treatment of Philadelphia 
chromosome-positive leukemia.  Imatinib is also a 
promising candidate for the treatment of fibrotic dis-
eases and it seems reasonable to suggest that imatinib 
may inhibit PDGF-stimulated fibrosis,  and that if 
TGF-β-induced fibrosis is mediated through c-abl,  
imatinib may represent a single therapy capable of 
inhibiting the activity of both TGF-β and PDGF 
[50].  In fact,  blockade of TGF-β and/or PDGF 
signaling by imatinib reduced the development of 
fibrosis in various experimental models [50,  51].  
Recently,  imatinib has been investigated for the treat-
ment for steroid-refractory chronic GVHD; results 
suggested its effectiveness as a salvage treatment [29,  
52].  Moreover,  Nakasone et al.  showed that the 
incidence and severity of chronic GVHD were reduced 
by prophylactic administration of imatinib after SCT 
[53].  Thus,  targeting TGF-β and/or PDGF signal-
ing may be a useful strategy for preventing or treating 
chronic GVHD.
　 Tregs. Tregs are a T-cell subset marked by a 
CD4+ CD25hi Foxp3+ phenotype,  and constitute ～5- 
10ｵ of peripheral CD4+ T cells; they play an impor-
tant role in peripheral tolerance [54].  Impairment of 
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Tregs is associated with loss of peripheral tolerance,  
autoimmunity,  and chronic GVHD [55,  56].  After 
transplant,  thymic generation of naïve Tregs in adult 
patients was markedly impaired,  and the reconstituted 
Tregs had a predominantly activated/memory pheno-
type [1].  Recently,  Matsuoka et al.  investigated the 
reconstitution of Tregs and conventional T cells 
(Tcons) after myeloablative HSCT [57].  During the 
lymphopenic period after HSCT,  Tregs underwent 
higher levels of proliferation than Tcons; Tregs 
expanded rapidly and achieved normal levels by 9 
months after HSCT.  However,  this Treg expansion 
was counterbalanced by their increased susceptibility 
to Fas-mediated apoptosis [57].  In patients showing 
prolonged CD4+ lymphopenia,  the Treg pool declined 
preferentially,  resulting in a prolonged imbalance 
between Tregs and Tcons,  which was associated with 
a high incidence of extensive chronic GVHD [57].  
These results indicate that CD4+ lymphopenia is a key 
factor in Treg homeostasis,  and that impaired recon-
stitution of Tregs can result in loss of tolerance and 
the development of chronic GVHD.
　 Adoptive transfer of Tregs and regulation to 
increase Tregs in recipients are considered to be 
effective clinical strategies for GVHD.  In a mouse 
model,  donor splenic Tregs were shown to prevent 
chronic GVHD with autoimmune manifestations [20].  
In humans,  Koreth et al.  showed that low-dose IL-2,  
which is required for homeostatic maintenance of 
natural CD25+ CD4+ Treg cells [58],  expands the 
Treg population,  resulting in the amelioration of 
human chronic GVHD [59].
　 Donor immunity in allogeneic HSCT harnesses 
beneficial graft-versus-leukemia (GVL) effects; thus,  
allogeneic HSCT represents a potent form of immuno-
therapy for hematological malignancies [60,  61].  Unfor-
tunately,  GVL effects are also closely associated with 
GVHD [62].  There has been a decades-long struggle 
to enhance GVL while suppressing GVHD.  As men-
tioned above,  “Treg therapy” may be effective for 
GVHD,  but the infusion of Tregs may potentially 
increase the risk of recurrent malignancy,  because 
Tregs are a major concern in cancer immunology,  
where they have documented inhibitory activity on 
antitumor immunity.  A study by Negrin et al.  revealed 
that Tregs use distinct non-overlapping mechanisms to 
suppress GVHD and GVL effects [63].  This suggests 
that Tregs can distinguish GVHD from GVL activity.  

More experimental and clinical studies are warranted 
to establish the best methods of “Treg therapy” for 
chronic GVHD while preserving GVL effects.
　 Contribution of B cells or autoantibodies.
B cells or autoantibodies may be involved in the 
pathophysiology of chronic GVHD.  A strong correla-
tion was identified between chronic GVHD and the 
presence of antibodies to Y chromosome-encoded his-
tocompatibility antigens [64].  Elevated levels of B 
cell-activating factor (BAFF),  which promotes sur-
vival and differentiation of activated B cells,  have been 
observed in patients with chronic GVHD; further-
more,  genetic variation in BAFF was also correlated 
with chronic GVHD [65,  66].  She et al.  reported 
that the development of human chronic GVHD was 
associated with an increased number of B cells 
expressing high levels of Toll-like receptor (TLR) 9 
[67].
　 The idea that B cells and autoantibodies contribute 
to chronic GVHD is also supported by the observation 
that in vivo depletion of B cells using rituximab can 
suppress the progression of complex chronic GVHD 
[68,  69].  Rituximab is a chimeric murine/human 
monoclonal antibody that binds specifically to the 
CD20 antigen,  which is expressed almost exclusively 
on the surfaces of B lymphocytes [70,  71].  Cutler et 
al.  reported a large series of steroid-refractory 
chronic GVHD patients treated with rituximab [69].  
The clinical response rate was 70ｵ,  including 2 
patients with complete responses; the clinical responses 
were limited to patients with cutaneous and musculo-
skeletal manifestations of chronic GVHD and were 
durable through 1 year after therapy [69].
　 The Th1/Th2/Th17 paradigm. Th1 and 
Th2 cells are distinguished most clearly by the cytok-
ines they produce.  Interferon-γ (IFN-γ) is the defining 
cytokine of Th1 cells,  whereas IL-4,  IL-5,  and IL-13 
are the signature cytokines produced by Th2 cells 
[72].  A third subset of CD4+ effector cells was iden-
tified and named Th17 cells,  because the signature 
cytokine they produce is IL-17 [73].  In acute GVHD,  
several groups have reported roles of Th1/2/17 
cytokines in mouse models,  but with inconsistent 
results [74-79].  These reports indicate that donor 
CD4+ T cells can reciprocally differentiate into Th1,  
Th2,  and Th17 cells that mediate organ-specific GVHD 
(Th1: gut and liver; Th2: lung and skin; Th17: gut 
and skin) [74,  78,  79].
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　 We recently showed that Th1 and Th17 cells con-
tribute to chronic GVHD using a MHC-compatible,  
minor histocompatibility antigen-incompatible mouse 
model of chronic GVHD [21].  Th1 and Th2 responses 
were up-regulated early after HSCT,  followed by up- 
regulation of Th17 cells [21].  Significantly greater 
numbers of Th17 cells infiltrated into the lung and 
liver from allogeneic recipients than from syngeneic 
recipients [21].  Infusion of IFN-γ-/- or IL-17-/- donor 
T cells attenuated chronic GVHD in the skin and sali-
vary glands [21],  confirming that Th1 and Th17 
contribute to the development of chronic GVHD.  We 
also identified a population of donor-derived IFN-γ/
IL-17 double-positive cells following only allogeneic 
HSCT,  not syngeneic HSCT,  suggesting that this 
population is generated by allogeneic stimulation,  but 
is not due to lymphopenia-induced proliferation [21].
　 Recently,  the Th17 cell spectrum has been shown 
to range from “classical” to “alternative” Th17 cells.  
Classical Th17 cells depend on TGF-β,  are more 
regulated,  and less pathogenic.  In contrast,  “alterna-
tive” Th17 cells depend on IL-23,  are less regulated,  
and more pathogenic [80].  The accumulated evidence 
suggests that T-bet and IFN-γ expression by Th17 
cells is dependent on IL-23,  but is inhibited by 
TGF-β and is thus a characteristic of alternative 
rather than classical Th17 cells [80-84].  Further 
investigations will be needed to clarify the differ-
ence(s) in the functions of IL-17 single-positive and 
IFN-γ/IL-17 double-positive cells,  taking into consid-
eration both classical and alternative Th17 cells,  in 
chronic GVHD pathogenesis.

Retinoids for the Treatment of Chronic GVHD

　 Retinoic acid,  the active metabolite of vitamin A,  
exerts multiple effects on cell differentiation and sur-
vival by binding to retinoic acid receptors (RARs) and 
retinoid X receptors (RXRs) [85].  All-trans-retinoic 
acid (ATRA) has been reported to suppress the dif-
ferentiation of Th17 cells with reciprocal induction of 
Tregs [86].  Am80,  a novel RARα/β-specific syn-
thetic retinoid,  has a biological activity approxi-
mately 10 times more potent than that of ATRA,  and 
directly inhibits Th1 cytokine production [87].  Thus,  
we hypothesized that retinoids would down-regulate 
both Th1 and Th17 differentiation in donor T cells,  
resulting in attenuation of chronic GVHD.  Recipient 

mice were orally administered Am80 from day 0 of 
HSCT.  We found that Am80 significantly ameliorated 
the clinical and pathological chronic GVHD score,  
compared with controls [21].  Additionally,  periph-
eral lymph nodes from Am80-treated recipients pro-
duced significantly less Th1 and Th17 cytokines,  
confirming that Am80 regulated both Th1 and Th17 
responses,  resulting in the attenuation of chronic 
GVHD [21].  We also demonstrated that Am80 was 
effective in the treatment setting; Am80 was orally 
administered to mice from day 21 of HSCT,  when 
clinical signs of chronic GVHD had developed [21].  
We are now planning a phase I/II clinical study of 
Am80 for the treatment of refractory chronic GVHD.

Conclusions

　 We reviewed many mediators that contribute to or 
regulate chronic GVHD.  A better understanding of the 
biology of chronic GVHD will lead to the development 
of novel strategies for its prevention and treatment.  
Successful clinical studies of treatments for chronic 
GVHD would improve patient outcomes and result in 
the establishment of new standards of care.
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