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Human umbilical cord blood (HUCB) cells are rich source of immature stem cells,  which have the 
potential to repair lost tissue.  Intractable central nervous system (CNS) disorders are important tar-
gets for regenerative medicine,  and the application of HUCB cells is being investigated in animal 
models of CNS disorders.  Transplantation of HUCB has induced functional improvements in these 
animal models due to multiple therapeutic effects including neuroprotection,  anti-inflammation,  angio-
genesis,  and neurogenesis.  HUCB cells are easily available and safer than other stem cells used in 
transplantation therapy.  In this review,  we focus on HUCB transplantation as an encouraging thera-
peutic approach for animal models of neonatal hypoxic-ischemic brain injury and ischemic stroke.
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uman umbilical cord blood (HUCB) serves as a 
source of nutrients and oxygen between a 

mother and fetus,  and can be collected at birth using 
non-invasive procedures.  HUCB is known as a rich 
source of stem cells,  and is used in the treatment of 
various hematopoietic diseases [1,  2].  Recently,  it 
was widely reported that the use of HUCB was not 
limited to the treatment of hematological disorders,  
and that HUCB can induce regeneration in the central 
nervous system (CNS) [3,  4].  HUCB cells have a 
history of clinical use in hematology and oncology,  and 

unlike embryonic stem cells,  can be collected easily 
and without controversy.  Since perinatal and adult 
ischemic brain damage is a cause of mortality and 
severe neurologic disability,  the promise of HUCB 
transplantation for the treatment of CNS disorders 
becomes even more compelling (Fig.  1).

Stem Cell Populations of HUCB

　 HUCB is rich in hematopoietic stem cells (HSCs),  
a type of stem cell that is the source of most blood cell 
lineages [5].  In addition,  a variety of non-hematopoi-
etic stem cells have been identified.  Mesenchymal 
stem cells (MSCs) [6,  7] are defined as being able to 
adhere to plastic and as expressing CD29,  CD44,  and 
CD105 but not the hematopoietic cell markers CD34 
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and CD45.  Endothelial stem cells [8],  stromal pre-
cursor cells [9],  and still-not-fully-characterized 
populations of stem cells also exist in HUCB.  Cells 
from the mononuclear fraction of HUCB are able to 
differentiate into multiple lineages under appropriate 
culture conditions [10].  Unrestricted somatic stem 
cells (USSCs) are also promising candidates as multi-
potent stem cells,  which were isolated as a CD45-
negative population from HUCB [11].  USSCs can be 
differentiated into osteoblasts,  chondroblasts,  adipo-
cytes,  and neural cells in vitro.  Moreover,  the in vivo 
differentiation of USSCs along mesodermal and endo-
dermal pathways has been demonstrated in nude rat 
femurs.  The OCT4A gene encodes one of the tran-
scription factors that is important in maintaining the 
multipotency of HUCB stem cells as well as embry-
onic stem cells.  Inhibition of OCT4A expression in 
HUCB stem cells inhibits cell proliferation and 
reduces multipotency [12].  Although these pluripo-
tent stem cell populations are very rare,  they may be 

helpful for the effective treatment of irreversible 
functional deficits.

HUCB Transplantation for Neonatal  
Hypoxic-Ischemic Brain Injury

　 Cerebral palsy is one of the severe neurodevelop-
mental sequelae of perinatal hypoxic-ischemic enceph-
alopathy (HIE) [13].  There is currently no effective 
therapy for the functional regeneration of nerve tissue 
that is damaged during the perinatal period.  The 
therapeutic potential of HUCB transplantation in 
animal models of HIE has been evaluated in several 
laboratories.  The neonatal hypoxic-ischemic (HI) brain 
injury model has proved to be useful as an animal 
model of perinatal HIE [14,  15].  In this model,  
7-day-old pups undergo unilateral common carotid 
artery ligation followed by systemic hypoxia,  leading 
to unilateral brain damage in the hemisphere ipsilat-
eral to the ligation.  In rat models of neonatal HI,  
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Transplantation of HUCB cells 

HUCB cells contain HSCs, MSCs, USSCs, 
stromal precursor cells, endothelial stem cells  

Neuroprotective effects

Angiogenesis

Anti-inflammatory effects

・ Neonatal hypoxic-ischemic brain injury
・ Ischemic stroke

Therapeutic mechanisms for functional recovery

Fig. 1　 The transplantation of human umbilical cord blood (HUCB) showed functional recovery in animal models of neonatal hypoxic-
ischemic brain injury and ischemic stroke.  The possible mechanisms of transplant therapy include neuroprotective effects,  angiogenesis 
and anti-inflammatory effects.  HUCB,  human umbilical cord blood; HSCs,  hematopoietic stem cells; MSCs,  mesenchymal stem 
cells; USSCs,  unrestricted somatic stem cells.



intraperitoneal transplantation of HUCB-derived 
mononuclear cells led to the amelioration of spastic 
paresis.  Human leukocyte antigen-positive trans-
planted cells were found not to express markers of 
neuronal cells,  although the cells migrated from the 
intraperitoneal cavity into the damaged brain tissue 
and were detectable until 2 weeks after transplanta-
tion [16].  In another study,  HUCB-transplanted rats 
showed functional improvement of their developmental 
sensorimotor reflexes; moreover,  the number of cells 
expressing caspase-3 and activated microglia was sig-
nificantly reduced in the striatum of HI rats [17].  
Yasuhara et al.  reported that mannitol,  a blood-brain 
barrier permeabilizer,  enhanced the expression of 
neurotrophic factors in neonatal HI-injured rats trans-
planted with HUCB [18].  Furthermore,  HUCB 
transplantation normalized cortical processing and 
sensorimotor behavior assessed using in vivo electro-
physiological recordings in the primary somatosensory 
cortex [19].  The latter study was the first to prove 
the link between cell transplantation and behavioral 
outcomes via the modulation of cortical reorganization 
and physiology following neonatal HI brain injury.  
However,  other authors have found that HUCB did not 
improve motor function or attenuate brain damage 
after the intravenous administration of HUCB cells.  A 
study using immunofluorescence and PCR analyses 
detected only a few HUCB cells in the brain [20].  
For more effective treatment of neonatal HI brain 
injury,  it is necessary to investigate optimal basic 
conditions such as cell dose,  timing,  and delivery 
route.
　 HUCB is currently being used for autologous 
transplantation in the treatment of cerebral palsy at a 
clinical trial conducted at Duke University,  USA 
(NCT01147653) and the Medical College of Georgia,  
USA (NCT01072370).  The preliminary results of this 
trial have been highly encouraging,  and additional 
patients are being enrolled.  Kochi Medical School 
(Japan) also started a clinical trial using autologous 
HUCB infusion for the treatment of children with 
cerebral palsy.
　 To date,  the existing neonatal HI brain injury 
models do not accurately reproduce the pathological 
conditions of cerebral palsy.  We are developing a 
novel mouse model of cerebral palsy to address these 
deficiencies by monitoring oxygen saturation levels.  
These model mice reproduce the motor deficits 

observed in cerebral palsy,  and we are now investi-
gating the therapeutic effects of HUCB transplanta-
tion in this model.

HUCB Transplantation for Ischemic Stroke

　 In the treatment of stroke,  Chen et al.  were the 
first to report the therapeutic effects of HUCB in a rat 
model of middle cerebral artery occlusion (MCAO) 
[21].  The intravenous administration of HUCB sig-
nificantly ameliorated the behavioral deficits in this 
model,  and grafted cells were detected in the injured 
brain at 7 days after stroke.  Similar results were 
reported by Vendrame et al.  [22],  who demonstrated 
that HUCB transplantation significantly improved 
behavioral performance and reduced infarct volume 
after MCAO.  Willing et al.  investigated the delivery 
route of HUCB administration (intravenous versus 
intrastriatal) in a rat model of permanent MCAO.  
They found improvements in a number of behavioral 
tests after the transplantation of HUCB cells via both 
delivery routes.  However,  in the step test,  significant 
improvements were observed only following the intra-
venous delivery of HUCB cells.  This suggests that the 
intravenous delivery of cells is preferable to direct 
intraparenchymal delivery in the long term,  and the 
observed functional recovery may be due to peripheral 
effects by systemic adminatration [23].  Furthermore,  
HUCB transplantation restored the MCAO-induced 
reduction of spleen size and depletion of the spleen 
CD8＋ population by increasing the production of 
interleukin-10 (IL-10),  an anti-inflammatory factor.  
These results suggest the immunomodulatory mecha-
nism by which HUCB mediates protection in the rat 
MCAO stroke model [24].  Treatment of HUCB with 
mannitol significantly increased the level of neu-
rotrophic factors in the ischemic brain,  which was 
correlated with reduced cerebral infarction volume 
and improvement of motor function [25].  Recently,  
Lim et al.  reported that the intrathecal administration 
of HUCB-derived MSCs by lumbar puncture signifi-
cantly reduced ischemic damage.  Grafted cells were 
detected in the ischemic boundary zone and had dif-
ferentiated into neurons and astrocytes by 28 days 
after transplantation [26].  These studies suggest that 
the administration of HUCB results in an amelioration 
of motor function and reduction of infarct volume and 
immunological responsiveness in animal models of 
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stroke.

Therapeutic Mechanisms

　 Neuroprotective effects. Reportedly,  func-
tional recovery following HUCB transplantation 
involves multiple mechanisms in HI injured animals.  
While many studies have proved the ability of HUCB 
cells to express neuronal,  astrocyte,  and oligoden-
drocyte markers in vitro [27,  28],  only a small per-
centage of transplanted HUCB cells display a neuronal 
cell phenotype in the host brain.  Functional improve-
ment has been found at an early date after HUBC 
transplantation.  It is quite unlikely that the grafted 
cells incorporated into the brain tissue and formed 
neuronal networks in the early days after transplanta-
tion.  Thus,  it is more likely that these cells act as a 
source of trophic factors in the CNS and peripheral 
organs.  Glial cell line-derived neurotrophic factor 
(GDNF),  brain-derived neurotrophic factor (BDNF),  
nerve growth factor (NGF),  neurotrophin-3 (NT-3),  
neurotrophin-4/5 (NT-4/5),  interleukin-8 (IL-8),  
monocyte chemoattractant protein-1 (MCP-1),  inter-
leukin-1α (IL-1α),  and stromal cell-derived factor 1α 
(SDF-1α) are consistently expressed by cultured 
HUCB cells [29,  30].  BDNF and NT-4/5 were also 
detected in the supernatants of HUCB cells.  BDNF 
and NGF block caspase-3-mediated apoptosis and 
microglial activation in the ischemic brain; therefore,  
these neuroprotective factors may exert a beneficial 
influence on HUCB and the microenvironment in the 
injured neuronal tissue [31,  32].  Oligodendrocytes 
subjected to oxygen-glucose deprivation were rescued 
by co-incubation with HUCB cells via Akt Ser473 
phosphorylation.  The administration of HUCB increased 
Akt phosphorylation and reduced the cleavage of cas-
pase-3 following MCAO.  It was suggested that trophic 
factors from HUCB activated the PI3K/Akt signal 
transduction pathway to enhance the viability of cells 
exposed to ischemic conditions [33].
　 Angiogenesis. Angiogenesis is an important 
process playing a therapeutic role in ischemic injured 
tissue [34].  Taguchi et al.  demonstrated that the 
transplantation of CD34+ cells derived from CB 
induced angiogenesis at the ischemic boundary zone 
and resulted in endogenous neurogenesis in a mouse 
stroke model [35].  Suppression of endothelial prolif-
eration by endostatin,  an anti-angiogenic agent,  dimin-

ished this endogenous neurogenesis.  These data sug-
gest that the neovascularization induced by the 
transplantation of CD34+ cells is essential for survival 
and enhances neuronal regeneration after stroke.  
CD34+ cells help to maintain the cerebral circulation 
during ischemic stress and secrete various angiogenic 
factors,  including vascular endothelial growth factor 
(VEGF),  hepatocyte growth factor (HGF),  and insu-
lin-like growth factor-1 (IGF-1) [36,  37].  HUCB-
derived CD34+ cells promote,  directly or indirectly,  
an environment that is conducive to neovascularization 
of the ischemic brain.  The transplantation of HUCB-
derived MSCs was shown to promote the formation of 
new blood vessels and increased cortical blood flow in 
a rat model of MCAO [38].  Transplanted cells were 
observed around endothelial cells and shown to 
express VEGF and BDNF in brain ischemia models 
[39,  40].  In addition,  the expression of Tie-2,  an 
endothelial protein associated with angiogenesis,  was 
increased after HUCB transplantation [40].  Angio-
genesis is mainly regulated by the VEGF/VEGF 
receptor and the angiopoietin/Tie-2 signaling pathway 
[41].  According to these results,  the formation of 
new blood vessels with increased cerebral blood flow 
in the ischemic brain might enhance neurogenesis and 
neuronal survival,  thereby supporting functional 
recovery.
　 Anti-inflammatory effects. Ischemia in the 
brain elicits a strong inflammatory response; it trig-
gers acute inflammation,  which has been associated 
with an increase in brain damage [42].
　 In MCAO rats,  a massive response by the periph-
eral immune system is activated at 6 hours after rep-
erfusion [43].  After MCAO,  activated spleen cells 
secrete significantly increased levels of inflammatory 
factors including tumor necrosis factor-α (TNF-α),  
interferon-γ (IFN-γ),  interleukin-6 (IL-6),  MCP-1,  
and interleukin-2 (IL-2).  In HUCBC-treated MCAO 
rats,  TNF-α and IFN-γ levels were significantly 
depressed compared to those in sham-treated rats.  
HUCB transplantation increased the levels of IL-10,  
rescued the stroke-induced reduction of spleen weight,  
and restored the depleted levels of spleen CD8+ 
T-cells [24].  IL-10 is a regulatory cytokine that 
plays an important role in maintaining the anti-inflam-
matory environment within the CNS [44,  45].  The 
modulation of this immuno-inflammatory response is 
one of the protecting effects induced by HUCB trans-
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plantation following ischemic brain injury.  In the 
CNS,  microglial cells are sensitive sensors of events 
occurring in their environment,  and contribute to 
various inflammatory responses [46,  47].  Activated 
microglial cells facilitate oxidative injury,  inflamma-
tory responses,  and neuronal cell apoptosis [48].  
HUCB transplantation significantly reduces the num-
ber of activated microglia and blocks the infiltration of 
CD11b-positive amoeboid-shaped immune cells in the 
brain following HI injury [17].  HUCB may modulate 
the beneficial or harmful signals of microglia [49].  
Newcomb et al.  indicated that the therapeutic mecha-
nism of HUCB transplantation preceded and amelio-
rated the massive infiltration of proinflammatory cells 
[50].  Thus,  transplanted HUCB cells act through 
anti-inflammatory mechanisms that reduce the damage 
caused by the HI-induced immune responses.

Conclusions

　 HUCB transplantation is a promising treatment for 
perinatal and adult ischemic brain injury.  The major 
advantages of HUCB cells are their availability,  
safety,  immaturity,  and heterogeneous properties.  
Distinct evidence from animal models clearly indicates 
that the transplantation of HUCB is a promising 
approach for the treatment of intractable CNS disor-
ders in the future.
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