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Replication-selective tumor-specific viruses constitute a novel approach for treatment of neoplastic 
disease.  These vectors are designed to induce virus-mediated lysis of tumor cells after selective viral 
propagation within the tumor.  Human telomerase is highly active in more than 85ｵ of primary can-
cers,  regardless of their tissue origins,  and its activity correlates closely with human telomerase 
reverse transcriptase (hTERT) expression.  We constructed an attenuated adenovirus 5 vector 
(Telomelysin,  OBP-301),  in which the hTERT promoter element drives expression of E1 genes.  Since 
only tumor cells that express telomerase activity would activate this promoter,  the hTERT proximal 
promoter would allow for preferential expression of viral genes in tumor cells,  leading to selective 
viral replication and oncolytic cell death.  Lymphatic invasion is a major route for cancer cell dissemi-
nation,  and adequate treatment of locoregional lymph nodes is required for curative treatment in 
patients with gastrointestinal tumors.  We demonstrated that intratumoral injection of Telomelysin 
mediates effective in vivo purging of metastatic tumor cells from regional lymph nodes.  Moreover,  
using noninvasive whole-body imaging,  we found that intratumoral injection of Telomelysin followed 
by regional irradiation induces a substantial antitumor effect,  resulting from tumor cell-specific radio-
sensitization,  in an orthotopic human esophageal cancer xenograft model.  These results illustrate the 
potential of oncolytic virotherapy as a promising strategy in the management of human gastrointesti-
nal cancer.
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iruses are the simplest form of life carrying 
genetic materials and are capable of entering 

host cells efficiently.  Because of these properties,  
many viruses have been adapted as gene transfer vec-
tors [1-3],  for which purpose adenoviruses have been 
well studied and characterized.  Adenoviruses are 
large,  double-stranded DNA viruses with tropism for 
many human tissues such as bronchial epithelia,  hepa-
tocytes,  and neurons.  Furthermore,  they are capable 

of transducing nonreplicating cells and can be grown 
to high titers in vitro,  a feature beneficial for clinical 
use.  High titers of replication-defective adenoviruses 
can be produced and have been successfully used in 
eukaryotic gene expression [1,  4,  5].  Numerous 
studies using in vitro and animal models have tested a 
wide variety of adenoviral gene therapy agents and 
reported potential beneficial effects for different tar-
get diseases,  including their tolerability and safety 
[6-9].
　 Oncolytic viruses that can selectively replicate in 
tumor cells and lyse infected cells have been exten-
sively investigated as novel anticancer agents [3,  10,  
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11].  These vectors are designed to induce virus-
mediated lysis of tumor cells after selective viral 
propagation within the tumor cell while remaining 
innocuous to normal tissues [12].  Onyx-015 is one 
such adenovirus with the E1B 55-kDa gene deleted,  
engineered to selectively replicate in and lyse p53-
deficient cancer cells; clinical trials of intratumoral 
injection of Onyx-015 [13] alone or in combination 
with cisplatin/5-fluorouracil have been conducted in 
patients with recurrent head and neck cancer [14,  
15].  However,  a subsequent study clarified that the 
capacity of Onyx-015 to replicate independently of the 
cell cycle does not correlate with the status of p53 
[16] but is determined by the late viral RNA export 
[17].
　 The optimal treatment of human cancer requires 
improvement of the therapeutic ratio,  maximizing the 
cytotoxic efficacy of an agent on tumor cells while 
minimizing its effect on normal cells.  This may not be 
an easy task because the majority of normal cells sur-
rounding tumors are sensitive to cytotoxic agents.  
Thus,  to establish reliable therapeutic strategies for 
human cancer,  it is important to seek genetic or epi-
genetic targets present only in cancer cells.  One tar-
geting strategy has involved the use of tissue-specific 
promoters to restrict gene expression or viral replica-
tion in specific tissues.  A large number of different 
tissue-specific promoters have been used for viro-
therapy applications; however,  tumor-specific rather 
than tissue-specific promoters would be more advanta-
geous targets.  For example,  the promoter of human 
telomerase reverse transcriptase (hTERT) is highly 
active in most tumor cells but inactive in normal 
somatic cell types.
　 This review highlights some very promising 
advances in cancer therapeutic technologies using the 
hTERT promoter against human gastrointestinal can-
cer.

Telomerase Activity for Transcriptional 
Cancer Targeting

　 One of the hallmarks of cancer is unregulated 
proliferation of a certain cell population,  which even-
tually affects normal cellular function in the human 
body.  This process almost universally correlates with 
the activation of telomerase.  Tumor cells can maintain 
telomere length predominantly due to telomerase,  and 

its activity is detected in about 85ｵ of malignant 
tumors [18],  whereas telomerase is absent in most 
normal somatic tissues [19],  with a few exceptions 
including peripheral blood leukocytes and certain stem 
cell populations [20,  21].  The strong association 
between telomerase activity and malignant tissue 
makes telomerase a plausible target for the diagnosis 
and treatment of cancer [22].
　 The enzyme telomerase is a ribonucleoprotein 
complex responsible for the addition of TTAGGG 
repeats to the telomeric ends of chromosomes,  and 
contains three components: the RNA subunit (known 
as hTR,  hTER,  or hTERC) [23],  the telomerase-
associated protein (hTEP1) [24],  and the catalytic 
subunit (hTERT) [25,  26].  Both hTR and hTERT 
are required for the reconstitution of telomerase 
activity in vitro [27] and,  therefore,  represent the 
minimal catalytic core of telomerase in humans [28].  
Both hTR and hTERT transcripts are easily detect-
able in cancer cells but are either absent or at low 
levels in normal cells [29]; however,  the hTR pro-
moter is always stronger than hTERT with presum-
ably more background [30].  Thus,  the hTERT pro-
moter region can be substantially used as a fine-tuning 
molecular switch that works exclusively in tumor cells 
(Fig.  1).

hTERT Promoter-driven Telomerase-specific 
Oncolytic Adenovirus

　 The use of modified adenoviruses that replicate and 
complete their lytic cycle preferentially in cancer cells 
is a promising strategy for the treatment of cancer.  
One approach to achieving tumor specificity of viral 
replication is based on the transcriptional control of 
genes that are critical for virus replication such as 
E1A or E4.  As described above,  telomerase,  espe-
cially its catalytic subunit hTERT,  is expressed in the 
majority of human cancers,  and the hTERT promoter 
is preferentially activated in human cancer cells [18].  
Thus,  the broadly applicable hTERT promoter might 
be a suitable regulator of adenoviral replication.  
Indeed,  it has been reported previously that the tran-
scriptional control of E1A expression via the hTERT 
promoter could restrict adenoviral replication to 
telomerase-positive tumor cells and efficiently lyse 
tumor cells [31-36].  Furthermore,  Kuppuswamy et al.  
have recently developed a novel oncolytic adenovirus 
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(VRX-011),  in which the replication of the vector 
targets cancer cells by replacing an adenovirus E4 
promoter with the hTERT promoter [37].  VRX-011 
could also overexpress the adenovirus death protein 
(ADP) (also known as E3-11.6K),  which is required 
for efficient cell lysis and release of virions from cells 
at late stages of infection.
　 The adenovirus E1B gene is expressed early in 
viral infection and its gene product inhibits E1A-
induced p53-dependent apoptosis,  which in turn pro-
motes the cytoplasmic accumulation of late viral 
mRNA,  leading to a shut-down of host cell protein 
synthesis.  In most vectors that replicate under the 
transcriptional control of the E1A gene including 
hTERT-specific oncolytic adenoviruses,  the E1B gene 
is driven by the endogenous adenovirus E1B promoter.  
However,  Li et al.  [38] have demonstrated that tran-
scriptional control of both E1A and E1B genes by the 
α- fetoprotein (AFP) promoter with the use of IRES 
significantly improved the specificity and the therapeu-
tic index in hepatocellular carcinoma cells.  Based on 
the above information,  we developed Telomelysin 
(OBP-301),  in which the tumor-specific hTERT pro-
moter regulates both the E1A and E1B genes (Fig.  2).  
Telomelysin is expected to control viral replication 
more stringently,  thereby providing better therapeu-
tic effects in tumor cells as well as attenuated toxicity 

in normal tissues [39].

In Vitro and In Vivo Antitumor Efficacy of 
Telomelysin in Human Gastrointestinal Cancer

　 As the majority of human cancer cells acquire 
immortality and unregulated proliferation by expres-
sion of hTERT [18],  hTERT-specific Telomelysin 
could theoretically possess a broad-spectrum antineo-
plastic activity against a variety of human tumors [39,  
40].  Telomelysin induced selective E1A and E1B 
expression in cancer cells,  which resulted in viral 
replication at 5-6 logs by 3 days after infection;  on 
the other hand,  Telomelysin replication was attenu-
ated up to 2 logs in cultured normal cells [39,  40].
　 In vitro cytotoxicity assays demonstrated that 
Telomelysin could efficiently kill various types of 
human gastrointestinal cancer cell lines including 
esophageal cancer,  gastric cancer,  and colorectal 
cancer in a dose-dependent manner [41].  These data 
clearly demonstrate that Telomelysin exhibits desir-
able features for use as an oncolytic therapeutic agent,  
as the proportion of cancers potentially treatable by 
Telomelysin is extremely high.
　 The in vivo antitumor effect of Telomelysin was also 
investigated using athymic mice carrying xenografts,  
because most murine tumor cells are known to express 
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Fig. 1　 Scheme of the proximal promoter of hTERT.  Putative protein-binding sites for various transcription factors are indicated.



low levels of the coxsackievirus and adenovirus recep-
tor (CAR).  Intratumoral injection of Telomelysin into 
human colorectal tumor xenografts resulted in a sig-
nificant inhibition of tumor growth and enhancement of 
survival [39,  40].  Macroscopically,  massive ulcer-
ation was noted on the tumor surface after injection of 
high-dose Telomelysin,  indicating that Telomelysin 
induced intratumoral necrosis due to direct lysis of 
tumor cells by virus replication in vivo [42].

Lymph Node Metastasis in Human 
Gastrointestinal Cancer

　 Lymph node status provides important information 
for both the diagnosis and treatment of human gastro-
intestinal cancer.  Lymphatic invasion is a major route 
for cancer cell dissemination,  and lymph node metas-
tasis represents aggressive tumor behavior and is 
associated with high rates of regional recurrence,  
which portends a poor outcome and may produce 
marked morbidity [43-45].  Therefore,  adequate 
resection of the locoregional lymph nodes is required 
for curative treatment in patients with gastrointestinal 
malignancies such as esophageal,  gastric,  and col-

orectal cancers [46,  47].  Extended lymphadenec-
tomy,  however,  may greatly impair quality of life,  
especially for patients with early-stage epithelial 
neoplasms in the gastrointestinal tract [48].  Their 
primary tumors can be removed by new endoluminal 
therapeutic techniques such as endoscopic submucosal 
dissection; however,  patients with submucosal inva-
sion,  lymphovascular infiltration of cancer cells,  or 
undifferentiated histology often become candidates for 
surgical organ resection with lymphadenectomy,  
because there is a risk of regional lymph node metas-
tasis,  although the frequency is relatively low [49].  
For example,  resection of upper gastrointestinal 
organs such as gastrectomy and esophagectomy may 
result in body weight loss and microgastria.  A less 
invasive way to selectively treat lymph node metasta-
sis would benefit these patients by allowing them to 
avoid prophylactic surgery.

In Vivo Lymphatic Spread of Virus on 
Regional Lymph Nodes

　 The therapeutic potential of viral agents against 
primary tumors as well as their systemic biodistribu-
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tion targeting distant metastases has been intensively 
investigated [3,  10,  50].  Few studies,  however,  
have examined the ability of the virus to progress to 
the regional draining lymph nodes.  Recently,  Burton 
et al.  showed that replication-deficient adenovirus 
could be successfully transported to the regional 
lymph nodes and non-invasively detect metastasis by 
expressing the prostate-specific reporter gene in an 
orthotopic prostate xenograft [51].
　 To verify that oncolytic adenoviruses progress 
through the lymphatic vessels to the regional lymph 
nodes,  we used an orthotopic mouse model of human 
rectal cancer with spontaneous lymph node metastasis.  
We have demonstrated that intratumoral injection of 
the telomerase-specific replication-selective GFP-
expressing adenovirus TelomeScan (OBP-401) (Fig.  
2) could efficiently visualize metastatic lymph nodes 
with GFP fluorescence signals in human cancer xeno-
graft models [52,  53].  These studies suggest the 
possible application of the adenovirus vectors as a 
lymphotropic agent for the treatment of lymph node 
metastasis.

In Vitro Purging of Human Colorectal Cancer 
Cells by Telomelysin

　 In vitro purging experiments demonstrated that 
Telomelysin infection could selectively eliminate 
human tumor cells in the presence of human or mouse 
lymphocytes [54].  We used TelomeScan to visualize 
viable human tumor cells after purging with 
Telomelysin,  as we have previously shown the high 
sensitivity and specificity of this molecular imaging 
method [52,  53].  It has been reported that the fiber-
modified adenovirus serotype 5 (Ad5) and an adenovi-
rus vector based on another serotype such as 35 effi-
ciently transduce exogenous genes into hematopoietic 
cells,  including stem cells; the unmodified Ad5,  how-
ever,  could rarely infect these cells because of the 
lack of CAR expression [55].  Indeed,  Ad5-based 
Telomelysin had no apparent effects on the viability of 
lymphocytes in vitro.  These results suggest that nor-
mal lymphocytes in the regional lymph nodes could be 
strictly protected from Telomelysin-induced oncolysis 
because lymphocytes are not subject to Telomelysin 
infection and viral replication is also unlikely to occur 
in normal cells due to their low telomerase activity 
[20].

In Vivo Antitumor Effect of Telomelysin on 
Lymph Node Metastasis

　 Mice bearing orthotopic human colorectal tumors 
received 3 rounds of intratumoral injection of 
Telomelysin at 2-day intervals beginning 2 weeks after 
the tumor inoculation.  Histopathological examination 
of the excised total lymph nodes showed that 
Telomelysin treatment considerably reduced the meta-
static rates.  We also used a simple real-time Alu PCR 
assay to quantify the few metastatic human tumor cells 
against a background of large numbers of mouse host 
cells [54].  This human-specific amplification method 
enabled us to detect human tumor cells in a linear 
range of 103-108 cells/sample and to monitor the time-
dependent exponential growth of spontaneous lymph 
node metastasis from orthotopic colorectal tumor 
xenografts.  In accordance with the histologically 
confirmed results,  the Alu PCR assay indicated that 
intratumoral injection of Telomelysin into the primary 
tumors significantly inhibited lymph node metastasis 
with high levels of viral replication.
　 We also used TelomeScan and a three-dimensional 
optical detection system (IVIS 200) (Xenogeu,  Almeda,  
CA,  USA) to compare the extent of metastasis after 
Telomelysin and control treatments.  After 2 weeks of 
orthotopic implantation of human colorectal tumor 
cells,  Telomelysin was administered intratumorally 
for 5 cycles.  We then used the IVIS imaging system 
to explore the abdominal cavity at laparotomy follow-
ing a single injection of TelomeScan into tumors.  The 
number of GFP-positive lymph nodes and the GFP 
signal levels of individual lymph nodes were much 
higher in mock-treated control mice than in 
Telomelysin-treated mice.  Indeed,  the sum of GFP 
fluorescence intensity in the abdominal cavity was 
significantly lower in mice treated with Telomelysin,  
confirming the in vivo biological purging effect of 
Telomelysin.  The fact that two independent and highly 
sensitive approaches showed comparable results sug-
gests the potent in vivo purging effect of oncolytic 
virotherapy on regional lymph nodes.
　 For effective treatment of metastatic tumors,  
intravenously infused chemotherapeutic drugs must be 
distributed in sufficient concentrations into the tumor 
sites; by contrast,  oncolytic viruses can replicate in 
the tumor,  cause oncolysis,  and then release virus 
particles that could reach distant metastatic lesions.  
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Moreover,  intratumoral injection can avoid the hepa-
totoxicity that may be induced by systemic adenoviral 
administration.  Therefore,  low-dose intratumoral 
administration of oncolytic virus that causes the repli-
cation and release of newly formed viruses from tumor 
cells may be safer than traditional full-dose chemo-
therapy,  and certainly,  intratumoral administration of 
the virus allows for a safer dose than would its sys-
temic administration.

Preoperative Intratumoral Administration of 
Telomelysin against Lymph Node Metastasis

　 Currently,  surgery and radiation are the most 
effective and clinically reliable local management 
strategies for human malignancies including lymphatic 
metastases.  Ionizing radiation targeting the lower half 
of the mouse body including primary tumors and the 
para-aortic lymphatic area did significantly inhibit 
lymph node metastasis,  but systemic toxicity indicated 
by symptoms such as body weight loss was remarkable 
in irradiated mice compared to mice treated with 
Telomelysin.  In fact,  total body irradiation at a dose 
of 10Gy has been reported to be lethal in mice 
because of acute radiation syndromes involving the 
hematopoietic system and gastrointestinal tract [56].  
We demonstrated that regional injection of 
Telomelysin might be simpler and safer than radio-
therapy as a treatment for metastatic lymph nodes 
[54].
　 We also assessed the effect of surgical resection of 
primary rectal tumors on lymph node metastasis.  
Unexpectedly,  metastatic tumor cells in the lymph 
nodes considerably increased after surgical removal of 
primary rectal tumors,  presumably due to the spread 
of tumor cells into the lymphatic circulation during the 
surgical procedure.  Another possible explanation of 
this phenomenon includes a decrease in angiogenic 
inhibitors such as angiostatin and endostatin secreted 
from the primary tumor mass [57].  In contrast,  
intratumoral injection of Telomelysin prior to surgical 
resection significantly inhibited lymph node metasta-
sis.  Telomelysin causes viral spread into the regional 
lymphatic area and selectively replicates in neoplastic 
lesions,  resulting in eradication of lymph node metas-
tasis.  Tumor cells infected with Telomelysin in the 
primary tumors are also unable to metastasize to the 
regional lymph nodes.  Therefore,  although the surgi-

cal procedure itself has the potential to promote 
regional metastasis,  preoperative treatment with 
Telomelysin may prevent this undesirable event.

Ionizing Radiation and DNA Repair 
Machinery

　 Current treatment strategies for advanced cancer 
include surgical resection,  radiation,  and cytotoxic 
chemotherapy.  Preoperative or postoperative chemo-
radiation may improve local control and the survival of 
advanced cancer patients by minimizing the risk of 
dissemination during the surgical procedure,  increas-
ing the complete resection rate,  and eradicating 
microscopic residual tumor cells that are not surgi-
cally removed.  The lack of restricted selectivity for 
tumor cells is the primary limitation of radiotherapy,  
despite improved technologies such as stereotactic and 
hyperfractionated radiotherapy.  Although radiother-
apy is generally considered to be less invasive,  the 
maximum doses and treatment fields are limited to 
avoid cytotoxic effects on the surrounding normal tis-
sues.  Therefore,  to improve the therapeutic index of 
radiotherapy,  there is a need for agents that effec-
tively lower the threshold for radiation-induced tumor 
cell death while not compromising the tolerance of 
normal cells.  The safety and efficacy of some candi-
dates are already being explored in clinical trials 
[58-60].
　 Ionizing radiation primarily targets DNA mole-
cules and induces double-strand breaks (DSBs) [61].  
Radiosensitization can result from a therapeutic 
increase in DNA DSBs or inhibition of their repair.  
Ataxia-telangiectasia-mutated (ATM) protein is an 
important signal transducer of the DNA damage 
response,  which contains DNA repair and cell-cycle 
checkpoints,  and activation of ATM by autophospho-
rylation occurs in response to exposed DNA DSBs 
[62].  Cells with ATM gene mutations have defects in 
cell-cycle checkpoints and DNA repair and are hyper-
sensitive to DSBs [63,  64]; thus,  agents that inhibit 
the ATM pathway can be useful radiosensitizers [65].  
The MRN complex,  consisting of Mre11,  Rad50 and 
NBS1,  is quickly stimulated by DSBs and directly 
activates ATM [66,  67] (Fig.  3).  Defects in the 
MRN complex lead to genomic instability,  telomere 
shortening and hypersensitivity to DNA damage [68].
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Telomelysin Sensitizes Human Cancer Cells to 
Ionizing Radiation

　 Virus infection and replication produce exogenous 
viral proteins,  many of which manipulate the host 
cellular machinery to allow viral persistence in the 
life-cycle.  The adenovirus E1B gene encodes a 
19-kDa polypeptide (E1B19kDa) and a 55-kDa protein 
(E1B55kDa).  These gene products are expressed 
early in viral infection and promote the cytoplasmic 
accumulation of late viral mRNA,  leading to a shutoff 
of host cell protein synthesis.  The E1B55kDa protein 
induces a cellular environment conducive to viral 
protein synthesis via a complex with the E4orf6 pro-
tein [69].  This E1B55kDa/E4orf6 complex degrades 
the MRN complex,  blocks downstream ATM signaling,  
and leads to a defective G2/M checkpoint in response 
to DSBs [67].  Although the impact of E1B55kDa-
mediated disruption of the MRN-ATM pathway on the 
DNA damage responses triggered by ionizing radiation 

has not yet been studied,  we demonstrated that 
Telomelysin-mediated E1B55kDa expression induced 
the degradation of all components of the MRN com-
plex,  which in turn prevented ATM autophosphoryla-
tion following ionizing radiation [70] (Fig. 3).  
Telomelysin expresses the E1B gene under the control 
of the hTERT promoter through an internal ribosome 
entry site sequence,  whereas dl1520 (Onyx-015,  
CI-1042),  which has been used in many clinical trials,  
was genetically modified by disruption of the coding 
sequence of the E1B55kDa protein [13].  Therefore,  
ionizing radiation-induced ATM activation was blocked 
more efficiently by Telomelysin than by dl1520,  which 
lacks E1B55kDa,  although dl1520 slightly inhibited 
ATM phosphorylation,  presumably due to E4orf6 
protein expression [71].
　 Our in vitro studies suggest that Telomelysin infec-
tion and ionizing radiation may mutually sensitize 
human tumor cells,  potentially leading to an effective 
combination treatment.  Telomelysin infection requires 
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a period of replication to induce the cytopathic effect 
and to sensitize cells to radiation,  whereas ionizing 
radiation immediately causes DNA DSBs.  Therefore,  
in a true clinical setting,  multiple cycles of the 
external-beam radiotherapy followed by intratumoral 
injection of Telomelysin may yield optimal results.  We 
confirmed the synergistic antitumor effect of three 
cycles of treatment with Telomelysin plus regional 
radiation and the in vivo induction of apoptotic cell 
death on subcutaneous human tumor xenografts.  The 
orthotopic implantation of tumor cells,  however,  
restores the correct tumor-host interactions,  which do 
not occur when tumors are implanted in ectopic subcu-
taneous sites [72].  Thus,  we also demonstrated the 
significant synergy of combined treatments in an 
orthotopic mouse model of human esophageal cancer by 
using a noninvasive whole-body imaging system.

Clinical Application of Telomelysin

　 Preclinical models suggested that Telomelysin 
could selectively kill a variety of human cancer cells in 
vitro and in vivo via intracellular viral replication regu-
lated by hTERT transcriptional activity.  Pharmaco-
logical and toxicological studies in mice and cotton rats 
demonstrated that none of the animals treated with 
Telomelysin showed signs of viral distress (e.g.,  ruf-
fled fur,  weight loss,  lethargy,  or agitation) or histo-
pathological changes in any organs at autopsy.  These 
promising data led us to design a phase I clinical trial 
of Telomelysin as a monotherapy.
　 The protocol “A phase I study of intratumoral 
injection with telomerase-specific replication-compe-
tent oncolytic adenovirus,  Telomelysin (OBP-301) for 
various solid tumors,” sponsored by Oncolys 
BioPharma,  Inc.  (Minato-ku,  Tokyo,  Japan),  is an 
open-label,  phase I,  3-cohort dose-escalation study 
[73,  74].  The trial commenced following approval of 
the US Food and Drug Administration (FDA) in 
October,  2006.  The study to assess the safety,  tol-
erability,  and feasibility of intratumoral injection of 
the agent in patients with advanced solid cancer has 
been completed.  The doses of Telomelysin were esca-
lated from low to high virus particles (VP) in one-log 
increments.  Sixteen patients with a variety of solid 
tumors such as melanoma,  head and neck cancer,  
breast cancer,  lung cancer,  and sarcomas were 
treated with a single-dose intratumoral injection of 

Telomelysin and then monitored over one month.
　 All patients received Telomelysin without dose-
limiting toxicity.  Common grade 1 and 2 toxicities 
included injection site reactions (pain,  induration) and 
systemic reactions (fever,  chills).  The data obtained 
on the pharmacokinetics and biodistribution of 
Telomelysin may be of interest.  Clinical trials of 
intratumoral and intravenous administration of 
CG7870,  a replication-selective oncolytic adenovirus 
genetically engineered to replicate preferentially in 
prostate tissue,  demonstrated a second peak of the 
virus genome in the plasma [75,  76],  suggesting 
active viral replication and shedding into the blood-
stream.  In fact,  circulating viral DNA was tran-
siently (＜6h after injection) detected in plasma in 13 
of 16 patients within 24h after injection.  This dose-
dependent initial peak in circulating virus was followed 
by a rapid decline; however,  three patients demon-
strated evidence of prolonged viral replication through 
detection of plasma viral DNA at days 7 and 14,  sug-
gesting Telomelysin replication in primary tumors.  
One of these 3 had disappearance of the injected 
malignant lesion and loco-regional uninjected satellite 
nodules,  fulfilling a definition of complete response at 
day 28.  Seven patients fulfilled the RECIST defini-
tion for stable disease by day 56 after treatment,  
while 6 patients showed 6.6 to 43ｵ tumor size reduc-
tion.  Thus,  Telomelysin appears well-tolerated and 
warrants further clinical studies for solid cancer.

Perspectives

　 There have been very impressive advances in our 
understanding of the molecular aspects of human gas-
trointestinal cancer and in the development of tech-
nologies for genetic modification of viral genomes.  
Transcriptional targeting is a powerful tool for tumor 
selectivity in cancer therapy,  and the hTERT-specific 
oncolytic adenovirus achieves a more strict targeting 
potential due to the amplified effect by viral replica-
tion.  Several independent studies using different 
regions of the hTERT promoter and different sites of 
the adenoviral genome responsible for viral replication 
have shown that the hTERT promoter allows adenovi-
ral replication as a molecular switch and induces 
selective cytopathic effects in a variety of human 
tumor cells [31-33,  39-41].  Among these viral con-
structs,  to the best of our knowledge,  Telomelysin 
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seems to be the first hTERT-dependent oncolytic 
adenovirus that has been used in a clinical trial based 
on preclinical pharmacological and toxicological stud-
ies.  Thus,  this telomerase-specific targeted oncolytic 
adenovirus holds promise for the treatment of human 
cancer.
　 It has been shown that Telomelysin delivered to the 
primary tumor site could spread into the regional 
draining lymphatic vessels,  selectively replicate in 
neoplastic foci,  and then reduce the number of tumor 
cells in metastatic lymph nodes in an orthotopic human 
colorectal cancer xenograft model [54].  This virus-
mediated molecular surgery for lymph node metastasis 
mimics the clinical scenario of lymphadenectomy; the 
technique,  however,  seems to be safer and less inva-
sive.  Moreover,  we demonstrated that preoperative 
delivery of Telomelysin into primary tumors prevented 
the exacerbation of lymph node metastasis by surgical 
procedures.  Telomelysin may offer advantages over 
other oncolytic viruses targeting lymphatic metastasis,  
as its safety profile as well as biodistribution pattern 
after intratumoral delivery have already been con-
firmed in a phase I clinical trial for various types of 
solid tumors [73,  74].  Our study provides evidence 
for the in vivo purging effect of Telomelysin in 
regional lymph nodes that is sufficiently reliable to 
support this approach.
　 A possible future direction for Telomelysin 
includes combination therapy with conventional thera-
pies such as chemotherapy,  radiotherapy,  surgery,  
immunotherapy,  and new modalities such as antiangio-
genic therapy.  Since the results of a phase I clinical 
trial demonstrated that even partial elimination of the 
tumor induced by intratumoral injection of 
Telomelysin could be clinically beneficial,  combination 
approaches may lead to the development of more 
advanced biological therapy for human cancer.  The 
combination of systemic chemotherapy and local injec-
tion of Telomelysin has been previously shown to be 
effective [77-79].  As a replication-deficient adenovi-
rus could replicate in cancer cells and enhance the 
anticancer effect when co-transfected with Telomelysin,  
which can produce the E1 protein,  we demonstrated 
the synergistic effects of Telomelysin combined with 
an E1-deleted replication-deficient adenoviral vector 
expressing the human wild-type p53 tumor suppressor 
gene (Ad5CMV-p53,  Advexin) [80,  81].  As described 
above,  Telomelysin is also synergistic with ionizing 

radiation against human esophageal cancer cells,  and 
we clarified the E1B55kDa-mediated mechanism used 
by Telomelysin to inhibit DNA repair.  Peri- or post-
operative administration of Telomelysin may also be 
valuable as an adjuvant therapy in areas of micro-
scopic residual disease at tumor margins to prevent 
recurrence or regrowth of tumors.
　 The field of targeted oncolytic virotherapy is pro-
gressing considerably and is rapidly gaining medical 
and scientific acceptance.  Although many technical and 
conceptual problems await solutions,  ongoing and 
future clinical studies will no doubt continue to pro-
vide important clues that may allow substantial prog-
ress in human gastrointestinal cancer therapy.  Thus,  
phase II studies of telomerase-specific virotherapy in 
human cancer patients are warranted.
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