Epidemiology of *Chlamydophila caviae*-like *Chlamydia* Isolated from Urethra and Uterine Cervix

Wataru Murao\(^a\), Koichiro Wada\(^a\), Akira Matsumoto\(^a\), Michihisa Fujiwara\(^b\), Hideto Fukushi\(^c\), Toshio Kishimoto\(^d,e\), Koichi Monden\(^a,f\), Reiko Kariyama\(^a*,f\), and Hiromi Kumon\(^a\)

\(^a\)Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8538, Japan,
\(^b\)Department of Obstetrics and Gynecology, Kawasaki Hospital affiliated with Kawasaki Medical School, Okayama 700-8505, Japan,
\(^c\)Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan,
\(^d\)Department of Virology I, The National Institute of Infectious Diseases, Tokyo 162-8460, Japan,
\(^e\)Okayama Prefectural Institute for Environmental Science and Public Health, Okayama 701-0298, Japan, and
\(^f\)Araki Urology Clinic, Kurushiki, Okayama 710-1834, Japan

In 2000, chlamydial strains OK133 and OK135 were isolated from 2 female patients with cervicitis. These strains were unresponsive to commercially available PCR and LCR test kits for the diagnosis of *Chlamydia trachomatis* infection, and their phenotypic characteristics were very similar. The OK135 nucleotide sequence in MOMP-VD2 gene closely resembled that of *Chlamydophila caviae* GPIC. A similar strain was isolated in 2003 from a male patient OKM2 with urethritis, from which the strain SC10-6 was cloned by the plaque purification method. The nucleotide sequence of the entire MOMP gene of SC10-6 was exactly the same as that of OK135. Thus, the strains OK135 and SC10-6, together with OK133, have been called *C. caviae*-like *Chlamydia*. We designed primers for nested PCR assay, the product of which showed a single-band 311-bp fragment, to detect *C. caviae*-like *Chlamydia*. Of swab specimens obtained from 202 patients from 2003 to 2006 (119 male and 83 female patients), 18 specimens (8.9\%) from 14 male and 4 female patients were positive, suggesting that *C. caviae*-like *Chlamydia* infection is rather common. Thus far, it has not been determined whether *C. caviae*-like *Chlamydia* is pathogenic for humans.

Key words: *Chlamydophila caviae*-like *Chlamydia*, urethra, uterine cervix, epidemiology, sexually transmitted infection

Species of the family *Chlamydiaceae* are obligate intracellular prokaryotic parasites of various types of eukaryotic cells including human and animal cells. A unique developmental cycle, in which chlamydial organisms alternate between an infectious elementary body (EB) and the vegetative reticulate body (RB), distinguishes chlamydial organisms from other bacteria [1]. The family *Chlamydiaceae* includes 2 genera *Chlamydia* and *Chlamydophila*, and nine species, *Chlamydia trachomatis*, *Chlamydia muridarum*, *Chlamydia suis*, *Chlamydophila pneumoniae*, *Chlamyphila psittaci*, *Chlamyphila pecorum*, *Chlamyphila abortus*, *Chlamyphila caviae* and *Chlamyphila felis* [2]. *C. pneumoniae* and *C. psittaci* are well known as pathogens of the respiratory tract. *C. trachomatis*, which was originally associated with the ocular disease trachoma,
is recognized as the most common pathogen of sexually transmitted infections (STIs) including urethritis and epididymitis in men, cervicitis, urethritis and upper genital tract infections in women, and conjunctivitis and pneumonia in newborns. Complications arising from \(C.\, \text{trachomatis} \) infection include pelvic inflammatory diseases such as ectopic pregnancy and infertility in women. Efforts to reduce the prevalence of infection with \(C.\, \text{trachomatis} \) in both men and women may be hampered by the relatively high frequency of asymptomatic patients in both sexes \([3]\). Due to the diversification of sexual cultures and behaviors, the increase in STI has become a social problem that cannot be ignored in Japan \([4]\).

A commercially available PCR test kit and a ligase chain reaction (LCR) test kit, both targeting the 7.5-kb cryptic plasmid common to all members of \(C.\, \text{trachomatis} \), have been widely used in the diagnosis of urogenital \(C.\, \text{trachomatis} \) infection in Japan. The results of laboratory experiments have shown that the detection limit for both PCR and LCR test kits is just two EBs, and these test kits are highly sensitive and specific \([5,\, 6]\). However, using these test kits alone, the biological characteristics of etiologic \(C.\, \text{trachomatis} \) strains cannot be analyzed because the isolation and propagation of \(C.\, \text{trachomatis} \) strains are not required in the diagnosis. Furthermore, studies have reported the presence of \(C.\, \text{trachomatis} \) lacking the plasmid \([7]\) and STI with plasmid-free \(C.\, \text{trachomatis} \) \([8-10]\). Moreover, \(C.\, \text{trachomatis} \) strains missing part of the nucleic acid sequence in the plasmid were currently reported \([11]\). Hence, when using only the PCR or LCR test kit, infection caused by \(C.\, \text{trachomatis} \) lacking the plasmid and/or missing a plasmid sequence would be overlooked.

In a preliminary survey of \(C.\, \text{trachomatis} \) urogenital infection in 2000, we isolated strains OK133 and OK135, which were unresponsive to PCR and LCR test kits, from female patients with severe cervicitis. Their phenotypic characteristics were very similar. Genetic analysis of OK135 revealed that the nucleotide sequence of the MOMP-VD2 gene closely resembled that of \(C.\, \text{caviae} \) GPIC. A strain similar to OK135 was more recently isolated from a male patient OKM2 with urethritis and cloned as strain SC10-6 by the plaque purification method \([7]\). Analysis of the entire MOMP gene showed that SC10-6 and OK135 were identical and closely resembled \(C.\, \text{caviae} \) GPIC (hereinafter referred to as \(C.\, \text{caviae-like Chlamydia} \)). In the present paper, we report an epidemiological study of \(C.\, \text{caviae-like Chlamydia} \) detected in swab specimens collected from the urethra and uterine cervix, using nested PCR with primers especially designed in our laboratory.

Materials and Methods

Patient specimens and cell cultures for isolation of \(C.\, \text{caviae-like Chlamydia} \). The specimens were obtained from patients with symptoms consistent with STI including OK133, OK135 and OKM2 from 2000 to 2006. Several specimens were obtained from female patients who were asymptomatic, but anxious to undergo STI examinations. For female genital specimens, a cotton swab was inserted into the endocervical canal and was gently rotated. For male urethral specimens, a swab was inserted 3 to 4 cm into the urethra and rotated. Each swab was placed in a test tube containing 0.5 ml of sucrose-phosphate-glutamate (SPG) buffer and 0.5 g of glass beads (0.5 mm in diameter), and then stored at \(-70^\circ\)C until testing. After quickly thawing at \(37^\circ\)C, a Vortex mixer was used to vigorously stir each test tube to release the chlamydial organisms from the cotton swab with about 1 ml of SPG buffer (0.5 ml in the tube and another 0.5 ml to wash the beads). After centrifuging at \(300 \times g \) for 3 min at room temperature, the supernatant (0.25 ml/well) was placed on McCoy cell confluent monolayers in a 24-well culture plate (Corning Costar Corp., Corning, NY, USA), followed by centrifugation \((860 \times g, \ 25^\circ\)C, 60 min\) using a Hitachi himac CR21E centrifuge (Hitachi Koki Co. Ltd., Tokyo, Japan). The inoculated cells were then incubated at \(37^\circ\)C in an atmosphere of 5% \(\text{CO}_2 \) in Dulbecco’s modified Eagle medium (DMEM; Nissui, Tokyo, Japan) containing 1\(\mu \)g/ml of cycloheximide, 10\(\mu \)g/ml of kanamycin, 10\(\mu \)g/ml of vancomycin, 10\(\mu \)g/ml of amphotericin B and supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco BRL, Life Technologies Inc., Grand Island, NY, USA). Under a phase-contrast microscope, cell conditions were monitored at appropriate intervals, and once a cytopathic effect was seen, the cells were suspended in SPG buffer (1 ml/well) and stored at \(-70^\circ\)C.

Fluorescent and iodine staining. McCoy
cell monolayers prepared on cover slips (14 mm in diameter) were inoculated with chlamydial isolates by centrifugation and incubated at 37°C. At 24 to 30 h post-inoculation, the cells were fixed with ethanol and stained with fluorescein-conjugated monoclonal antibody directed against the genus-specific antigen (Chlamydia FA Seiken [DFA stain]; Denka Seiken, Tokyo, Japan) to observe chlamydial inclusions. To check for glycogen accumulation in inclusions, the cover slips harvested at 30 h post-inoculation were dried and fixed with methanol, and then subjected to iodine staining according to the method of Matsumoto et al. [12].

Plaque purification. Plaque purification was carried out according to the method of Matsumoto et al. [7]. Briefly, 100 μl of chlamydial suspensions prepared in a series of 10-fold dilutions was directly added to each well containing 2 ml culture medium. After sufficient stirring and centrifugation at 860 × g for 60 min, the cells were overlaid with agarose medium consisting of 10% FBS-DMEM containing 1 μg/ml of cycloheximide and 0.5% agarose (SeaKem ME agarose; FMC BioProducts, Rockland, ME, USA). After solidification, the liquid medium, which was prepared by omitting agarose from the agarose medium, was added and incubated at 37°C in a 5% CO₂ incubator. The liquid medium was exchanged every 4 to 5 days. At an appropriate time after infection, the liquid medium was removed, and agarose medium containing 0.03% (final concentration) of neutral red was loaded on the agarose medium. After incubation at 37°C for 12 to 15 h, single plaques with sufficient separation from each other were recovered with agar-well punchers commonly used to make holes in the Ouchterlony immunodiffusion test. Each agarose plug placed in 1 ml of SPG buffer was sonicated and centrifuged at 300 × g for 5 min, and the supernatant was inoculated onto McCoy cells as described above. To purify each strain, this procedure was repeated three times.

In vitro drug susceptibility. The antimicrobial agents tested were clarithromycin (Taisho Pharmaceutical, Tokyo, Japan), minocycline (Wyeth Lederle, Tokyo, Japan) and tosufloxacin (Toyama Chemical, Tokyo, Japan). The agents were dissolved by the master dilution method. MICs of chlamydial strains obtained by plaque purification were determined by the standard method of the Japan Society of Chemotherapy [13]. Briefly, HeLa 229 cell confluent monolayers prepared on cover slips placed in 24-well culture plate were inoculated with chlamydial suspension at 1,000 IFU/well by centrifugation (860 × g, 60 min). After centrifugation, 1 ml of culture medium, consisting of Eagle’s MEM, 10% heat-inactivated FBS, and cycloheximide, at a final concentration of 1 μg/ml was applied. The medium also contained one concentration of the antimicrobial agents. Then, the plates were incubated at 37°C in an atmosphere of 5% CO₂ for 48 h. After ethanol fixation, the infected cells were stained with DFA and the inclusions were observed. The MIC was defined as the lowest concentration at which inclusion formation was completely inhibited.

Purification of EBs. EBs of purified strains and laboratory strains, such as C. caviae GPIC (VR-813, obtained from the American Type Culture Collection, Manassas, VA, USA), C. trachomatis biovars D and L2, and C. psittaci Cal 10 were prepared by the method reported previously [7]. Infected McCoy cells with well-developed inclusions were sonicated to facilitate the release of chlamydial organisms from the host cells. After brief centrifugation at 300 × g for 10 min to remove large debris, the supernatant was subjected to 25% sucrose-cushioning centrifugation (8,000 × g, 4°C, 60 min), and then the suspension was incubated with DNase (20 μg/ml) and RNase (20 μg/ml) in a water bath at 37°C for 60 min, followed by treatment with trypsin (10 μg/ml) at 37°C for 60 min. Similarly, EBs of C. pneumoniae TW183 were prepared from HEp2 cells having well-grown inclusions. After sonication to disperse large aggregates, the suspension was subjected to 25% sucrose-cushioning centrifugation again. The sediment was suspended in SPG buffer and used for the extraction of genomic DNA.

MOMP gene sequencing. The Puregene DNA purification kit (Gentra System, Minneapolis, MN, USA) was used for genomic DNA extraction from purified EBs of each strain. PCR was performed under the conditions shown in Table 1 using genomic DNA as a template and the primers reported by Kaltenboeck et al. [14] to amplify the entire MOMP gene of strains, namely OK135 and SC10-6, obtained through plaque purification. The resulting amplification products were cleaned using MagExtractor (Toyobo, Osaka, Japan), and the BigDye terminator
cycle sequencing FS ready reaction kit (Applied Biosystems Japan, Tokyo, Japan) was used to make sequencing templates. The ABI 310 Genetic Analyzer (Applied Biosystems Japan) was used to determine the MOMP gene of each strain, and a BLAST search was used to investigate the homology of the sequence in the MOMP genes with that of the standard strain, *C. caviae* GPIC [15].

Molecular diagnosis of clinical specimens.

Based on the nucleotide sequence data of the MOMP gene of the OK135 clone, primers (2 pairs) specific to the *ompA* gene of the same strain were designed (Table 1). The expected amplification product of nested PCR using these primer sets was a 311-bp DNA fragment. The genomic DNA of each strain was prepared from purified EBs with the QIAamp DNA stool mini kit (QIAGEN, Tokyo, Japan). Under the conditions shown in Table 1, 5μl of template and 45μl of reaction solution were added (10 × buffer, 0.2 mM dNTPs, 0.625U Taq polymerase (TaKaRa, Shiga, Japan) and 0.2μM primer) for a total volume of 50μl to perform nested PCR using Astec PC 801 thermal cycler. The resulting PCR product was subjected to electrophoresis using 1.2% agarose gel in relation to a 100-bp DNA ladder (New England Biolabs Japan, Tokyo, Japan) as a molecular standard, and the 311-bp band was examined.

In addition to the chlamydial culture, all swab specimens, from 119 male and 83 female subjects, were examined with the commercially available PCR test kit (AMPLICOR Chlamydia trachomatis: Roche Diagnostics K.K., Tokyo, Japan) for *C. trachomatis* and the PCR test kit (AMPLICOR Neisseria gonorrhoeae; Roche Diagnostic K.K.) for *N. gonorrhoeae* or gonococcal cultures. When the microscopic examinations were positive but the PCR for *C. trachomatis* was undetermined, nested PCR, for which 2 pairs of primers specific to the *ompA* gene of OK135 were especially designed, was carried out (Table 1).

For the male samples, *Mycoplasma genitalium*, *Mycoplasma hominis*, *Ureaplasma urealyticum* and *Ureaplasma parvum* were also examined with the multiplex PCR test kit (Mitsubishi Chemical Medience Corp., Tokyo, Japan) to confirm a solo infection with the chlamydial strain identical with OK135. Such tests were, however, not subjected to the female samples because of their heavier contamination with other microorganisms.

Results

Morphology of chlamydial strains obtained by the plaque purification.

In the preliminary DFA test, the inclusions formed from swab specimens of 3 patients, OKM2, OK133 and OK135 were noted their morphology. Therefore, these isolates were examined with staining methods in detail. It was suggested strongly that the swab specimen of the OKM2 patient contained, at least, 2 different *Chlamydia* species. To separate and purify each strain, the plaque formation was carried out successively, and 2 strains, SC10-6 and ST13-6-1, were obtained. The inclusions of ST13-6-1 were round or oval in shape (Fig. 1B) while those of SC10-6 were irregular (Fig. 1A). Simultaneously, many small particles showing specific stainability with DFA were scattered on the cell layers, suggesting that the particles were chlamydial bodies resulted from an inclusion burst. Consequently, it was likely that the strain SC10-6 grew rapidly. Fig. 2 shows the iodine-stained images of both SC10-6 and ST13-6-1 strains. The ST13-6-1 inclusions at 48h post-inoculation were intensely stained (Fig. 2B), indicating glycogen accumulation. The stainability, together with the round-shaped inclusion morphology in the DFA test, indicated that the ST13-6-1 strain was undoubtedly a member of the *C. trachomatis* species. By contrast, the SC10-6 inclusions were not stained even after 48h post-inoculation

Table 1

<table>
<thead>
<tr>
<th>Primer specificity</th>
<th>Primer sequences</th>
<th>Product length (bp)</th>
<th>PCR conditions</th>
<th>Reference</th>
</tr>
</thead>
</table>
| *ompA* of *Chlamydia phila* | F: 5'-AGCGATGCAGACACTCTCAAGGCC-3'
R: 5'-AGAATTCCTAGTTGATTAGCC-3' | 1400 | Initial denaturation: 3min, 94°C
Cycling: 10min, 96°C; 1min, 69°C; 1min, 72°C
Final extention: 10min, 72°C | 14 |
| 1st PCR | F: 5'-GTGTCGATTTCTCTTGCTTCT-3'
R: 5'-CTGAGGACGCTTTGTTGTAT-3' | 951 | Initial denaturation: 3min, 94°C
Cycling: 30sec, 94°C; 20sec, 55°C; 25sec, 72°C
Final extention: 30min, 72°C | this study |
| 2nd PCR | F: 5'-GCGAGACACGATCCCATC-3'
R: 5'-GCAACCAGATCCCATC-3' | 311 | Initial denaturation: 3min, 94°C
Cycling: 30sec, 94°C; 20sec, 55°C; 25sec, 72°C
Final extention: 30min, 72°C | this study |
Fig. 1 Fluorescent images of SC10-6 (A) and ST13-6-1 (B), 2 clones from OKM2 (a male patient with urethritis). DFA staining with genus-specific fluorescein-conjugated monoclonal antibody was used. Inclusions of ST13-6-1 were of the typical round shape, indicating C. trachomatis, but those of SC10-6 had irregular borders, and numerous lysed cells were seen at 48h post-inoculation.

Fig. 2 Iodine staining for SC10-6 (A) and ST13-6-1 (B) infected cells. Inclusions of ST13-6-1 stained brown, indicating glycogen accumulation associated with C. trachomatis. However, inclusions of SC10-6 were not stained, and no glycogen accumulation was confirmed.

(Fig. 2A). This result, together with the inclusion morphology and the presence of scattered chlamydial bodies in the DFA test, indicated that the SC10-6 strain was different from C. trachomatis. Additionally, the ST13-6-1 strain reacted positively with the PCR test kit while SC10-6 did not.

Determination of the species of SC10-6 and OK135 strains. To determine the species of SC10-6 and OK135 strains, the ompA gene was amplified from purified EBs of each strain and its nucle-
otide sequence was analyzed. The results revealed that the nucleotide sequences of *ompA* gene of both strains, SC10-6 and OK135, were exactly the same, that their *ompA* genes were highly homologous to the nucleotide sequence (99.0%) of the *ompA* gene in *C. caviae* GPIC, and that their putative 389-amino-acid sequences were exactly the same as that of OmpA in *C. caviae* GPIC. Therefore, it was concluded that OKM2 and OK135 patients were infected with 2 different species of chlamydiae; one was a typical *C. trachomatis* strain and the other was an unusual chlamydial species in human urogenital infections, *C. caviae*-like *Chlamydia*. Although the analysis of the *ompA* gene was not done for OK133, its phenotypic characteristics were quite similar to those of other two *C. caviae*-like *Chlamydia* strains, and the result obtained in nested PCR confirmed that OK133 was also *C. caviae*-like *Chlamydia* (see below).

Drug susceptibility of *C. caviae*-like *Chlamydia*. Determination of drug susceptibility of the strains SC10-6 and OK135 was requested by physicians at the clinics where the patients OKM2 and OK135 were medicated, because of their poor response to antichlamydial chemotherapy. The drug susceptibility of the strains, together with the ST13-6 strain and *C. trachomatis* serover D, were tested. The MIC values obtained for clarithromycin, minocycline and tosufloxacin were 0.016, 0.016 to 0.031 and 0.25 μg/ml, respectively; no difference in the MIC value was detected between the 2 strains. Additionally, there was no marked difference from the standard *C. trachomatis* serovar D. Based on the results, it was very likely that the patient’s poor response to chemotherapy was not a result of the chlamydial properties, but might have been due to *in vivo* drug circulation into histopathological regions in the patients.

Epidemiological analysis. The fact that the patients were dually infected with either SC10-6 or OK135 and *C. trachomatis* strains impelled us to investigate whether *C. caviae*-like *Chlamydia* was a pathogenic agent of human STI, and if so, whether *C. caviae*-like *Chlamydia* is widespread. Genomic DNA was extracted from purified EBs of OK133, OK135, SC10-6, *C. caviae* GPIC, *C. trachomatis* serovar D and L2, *C. psittaci* Cal 10 and *C. pneumoniae* TW183. Using extracted DNA, the nested PCR assay, designed on the basis of the *ompA* gene sequence of the OK135 strain, was performed as shown in Table 1, and a 311-bp amplification product was observed for OK133, OK135, SC10-6 and *C. caviae* GPIC (Fig. 3). The results demonstrate that this nested PCR assay was specific to *C. caviae* GPIC and *C. caviae*-like *Chlamydia*, and that OK133, OK135 and SC10-6 were all *C. caviae*-like *Chlamydia*. This suggests that the nested PCR assay specific to *C. caviae* GPIC can be used in epidemiological studies.

![Fig. 3](image_url)
Fig. 3 Electrophoresis of amplification products obtained by nested PCR assay which was performed using two pairs of primers specific to the *ompA* gene of *C. caviae*-like *Chlamydia* OK135 (Table 1). Electrophoresis was conducted using 1.2% agarose gel and a 100-bp DNA ladder as a molecular standard. The expected amplification product was a 311-bp DNA fragment.
Based on the results, the nested PCR assay was performed on swab specimens obtained from a total of 202 patients, including 119 male patients with urethritis and 83 female patients with either cervicitis or suspected STI from July, 2003 to December, 2006. In each patient, the presence or absence of *N. gonorrhoeae* (117 male and 83 female patients tested), *C. trachomatis* (114 male and 83 female patients tested) and *C. caviae*-like *Chlamydia* (all 202 patients tested) was determined (Fig. 4). Of the 119 male patients with urethritis, 34 had *N. gonorrhoeae*, 33 had *C. trachomatis*, and 8 had both *N. gonorrhoeae* and *C. trachomatis*. With regard to the 83 female patients, 45 asymptomatic patients underwent tests for sexually transmitted diseases after becoming pregnant or changing partners, and the other 38 patients had cervicitis-related symptoms, such as increased discharge, abnormal color and vaginal erosion. Of the 83 female patients, 2 had *N. gonorrhoeae*, 15 had *C. trachomatis*, and 1 patient had both *N. gonorrhoeae* and *C. trachomatis*. To determine the infection of *C. caviae*-like *Chlamydia*, the nested PCR assay was carried out as mentioned above; the results are summarized in Fig. 4. Among 14 male patients, including OKM2, who were positive for *C. caviae*-like *Chlamydia*, 7 had *C. trachomatis*, 4 had *N. gonorrhoeae*, and 1 had both *N. gonorrhoeae* and *C. trachomatis*. On the other hand, among the 4 female patients positive for *C. caviae*-like *Chlamydia*, 2 had *C. trachomatis*. In other words, *C. caviae*-like *Chlamydia*, with neither *C. trachomatis* nor *N. gonorrhoeae*, was detected in a total of 6 patients (4 male and 2 female patients). Table 2 summarizes the clinical backgrounds of the 20 patients who were positive for *C. caviae*-like *Chlamydia*, including OK133 and OK135. Eleven of the 14 male patients had urethritis-related symptoms, such as pain on urination and pus discharge, and 2 of the 6 female patients had cervicitis-related symptoms. In most patients, symptoms improved after chemotherapy. However, in case OK135, symptoms did not improve and intractable cervicitis developed, and in cases 9, 13 and 14, symptoms such as pain on urination continued even after chemotherapy. *M. genitalium* was detected in the male patients (cases 9, 10, 13 and 14) who were positive for *C. caviae*-like *Chlamydia* and negative for *C. trachomatis* and *N. gonorrhoeae*. In the female cases 11 and 12, the presence or absence of *Mycoplasma* and *Ureaplasma* spp. was not tested.

![Male patients tested](n=119)

![Female patients tested](n=83)

Fig. 4 *C. trachomatis*, *N. gonorrhoeae* and *C. caviae*-like *Chlamydia* infections are summarized for the 119 male and 83 female patients tested. In each patient, the presence or absence of *N. gonorrhoeae* (117 male and 83 female patients tested), *C. trachomatis* (114 male and 83 female patients tested) and *C. caviae*-like *Chlamydia* (all 202 patients tested) was determined. *C. caviae*-like *Chlamydia* was detected in 14 male and 4 female patients, including OK133 and OK135, which were isolated in 2000; a total of 20 *C. caviae*-like *Chlamydia* strains were isolated from 2000 to 2006.
Discussion

The results obtained in the present study revealed the presence of novel chlamydial strains that were undetectable with the PCR or LCR commonly used for diagnosis of *C. trachomatis* infection and that closely resembled *C. caviae*. *C. caviae* GPIC is well known as an etiologic agent in guinea pigs, but to the best of our knowledge, there have been no reports of isolated *C. caviae* or similar chlamydial strain from humans. How then was *C. caviae*-like *Chlamydia* isolated from the male urethra and cervical canal? No conclusive evidence on this point has been obtained. At the moment, it is speculated that *C. caviae*-like *Chlamydia* has been transmitted and colonized in the human pharynx or sexual organs through close contact with guinea pigs, and that sexual acts, including oral sex, can spread the organism from human to human. Such a speculation seems to be supported by the facts that other *Chlamydophila*, such as *C. abortus* and *C. felis*, regarded for a long time as animal-restricted pathogens, were revealed to be the causes of chlamydial abortion [16, 17] and conjunctivitis [18–20] in humans who might have been infected through close contact with carrier and/or infected animals. During transmission and colonization of *C. caviae*-like *Chlamydia*, genetic variations appeared to occur, because the homology of the *ompA* gene of this strain to the GPIC strain was very high but not identical. This fact leads us to speculate that several genes, not only the gene encoding MOMP but also other genes encoding functional proteins, have evolved to be stable during their transmission and multiplication in humans. Thus, it will be necessary to sequence the whole genome of *C. caviae*-like *Chlamydia* in the future.

Using the nested PCR assay specific to *C. caviae*-like *Chlamydia*, the organism was detected in a total of 18 patients. Of these patients, *C. trachomatis* and *N. gonorrhoeae* were detected in 9 and 4 patients, respectively, with one patient having both. Thus, *C. caviae*-like *Chlamydia*, with neither *C. trachomatis* nor *N. gonorrhoeae*, was detected in a total of 6 patients (4 male and 2 female patients). However, additional diagnostic tests detected *M. genitalium* in the 4 male patients. The samples of the 2 female patients were not tested because of possible genital contamination by microorganisms. Therefore, we cannot state conclusively that *C. caviae*-like *Chlamydia* is pathogenic for humans; the organism appeared to be rather common (positive percentage was 8.9%).

In general, chlamydial isolations should be done prior to antibiotic medication; fortunately, we man-

<table>
<thead>
<tr>
<th>No. of cases</th>
<th>Patient identification number</th>
<th>Date of the first medical examination</th>
<th>Sex</th>
<th>Age</th>
<th>Symptoms</th>
<th>C. trachomatis</th>
<th>N. gonorrhoeae</th>
<th>PCR for OK135 clone</th>
<th>Strain identification number of C. caviae-like Chlamydia</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK133</td>
<td>2000 female 20</td>
<td>nothing special</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>OK133</td>
</tr>
<tr>
<td>OK135</td>
<td>2000 female 27</td>
<td>leukorrhea</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>OK135</td>
</tr>
<tr>
<td>1</td>
<td>OKM2 2003, 07, 01 male 34</td>
<td>pus discharge</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>2</td>
<td>OKM10 2004, 01, 08 male 20</td>
<td>pain on urination</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>no cloning</td>
</tr>
<tr>
<td>3</td>
<td>OKM11 2004, 01, 26 male 29</td>
<td>inguinal pain</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>4</td>
<td>OKM13 2004, 02, 17 male 29</td>
<td>nothing special</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>5</td>
<td>OKM52 2005, 06, 18 female 33</td>
<td>leukorrhea</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>6</td>
<td>OKM59 2005, 06, 08 male 44</td>
<td>residual urine</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>7</td>
<td>OKM75 2005, 10, 14 male 21</td>
<td>pain on urination</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>no cloning</td>
</tr>
<tr>
<td>8</td>
<td>OKM88 2005, 11, 30 female 20</td>
<td>nothing special</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>no cloning</td>
</tr>
<tr>
<td>9</td>
<td>OKM99 2006, 02, 13 male 36</td>
<td>pain on urination, pus discharge</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>10</td>
<td>OKM98 2005, 12, 16 male 44</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>11</td>
<td>OKM104 2006, 02, 15 female NR</td>
<td>check for STI</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>12</td>
<td>OKM109 2006, 01, 05 female NR</td>
<td>check for STI</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>13</td>
<td>OKM112 2006, 03, 02 male 21</td>
<td>pain on urination</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>14</td>
<td>OKM116 2006, 03, 13 male NR</td>
<td>pain on urination, pyuria</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>15</td>
<td>OKM136 2006, 06, 24 male NR</td>
<td>pain on urination, pus discharge</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>16</td>
<td>OKM147 2006, 08, 18 male 30</td>
<td>pain on urination, pus discharge</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>no cloning</td>
</tr>
<tr>
<td>17</td>
<td>OKM185 2006, 10, 31 male 43</td>
<td>pus discharge</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>no cloning</td>
</tr>
<tr>
<td>18</td>
<td>OKM202 2006, 12, 09 male 24</td>
<td>pus discharge</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>no cloning</td>
</tr>
</tbody>
</table>

NR: no records
aged to isolate strains OK135 and SC10-6 through the McCoy cell after anti-chlamydial medication. In spite of the poor response in vivo and the rapid growth in vitro, the purified strains of Chlamydia caviae-like Chlamydia were susceptible to drugs such as clarithromycin, minocycline and tosufloxacin at similar levels as other chlamydiae. It is therefore concluded that the failure of chemotherapy was due to reduced drug circulation into histopathological regions in the patients. This finding should be a warning that the drug susceptibility of chlamydiae should be determined using organisms isolated from unresponsive patients; otherwise, the drug efficacy can be misunderstood.

Recently, we have started to collect pairs of samples: from the throat and urethra for men and from the throat and uterine cervix for women. These studies are expected to clarify the prevalence of infection with Chlamydia caviae-like Chlamydia as an STI, as well as its pathogenicity. Because urethritis or cervicitis caused solely by Chlamydia caviae-like Chlamydia has not been reported, further investigations are needed to determine its pathogenicity in humans. It will also be necessary to investigate the possibility of Chlamydia caviae-like Chlamydia causing nongonococcal/nonchlamydial urethritis or cervicitis, intrapelvic peritonitis, or infertility.

Acknowledgments. This work was supported in part by a grant-in-aid for exploratory research (18859474 to H. Kamio) from the Ministry of Education, Science, Sports, Culture and Technology of Japan.

References