Case Report

Intramesocolic Diverticular Perforation of the Sigmoid Colon Diagnosed by Detecting Air Collection in Anterior Pararenal Space on Computed Tomography: Report of a Case

Tatsuto Ashizawaa,b*, Koichiro Hamaa, Hiroaki Tanakab, and Masayuki Andob

aDepartment of Surgery, Hachioji Medical Center of Tokyo Medical University, Hachioji, Tokyo 193-0998, Japan, and bDepartment of Surgery, Tokyo Metropolitan Toshima General Hospital, Itabashi, Tokyo 173-0015, Japan

A 64-year-old woman was admitted to our hospital with lower abdominal pain. Routine laboratory values were unremarkable except for the white blood cell count (15,000/µl) and the C-reactive protein (CRP) value (22.5 mg/dl). A computed tomography (CT) scan revealed air collection in the middle of the anterior pararenal space. One day later, CT revealed air collection in the anterior pararenal space spread to the right side and abscess in the sigmoid mesentery. Because an intramesocolic perforation of the sigmoid colon was suspected, an emergency operation was performed. Abscess formation was recognized in the sigmoid mesentery, and sigmoidectomy including the contaminated mesentery and Hartmann’s procedure were performed. The perforation was 3 cm in diameter, and some diverticula were present in the vicinity of the perforated site. The specimen microscopically revealed perforation at the edge of the diverticulum in association with sudden disruption of the proper muscle layer. Based on pathological findings, intramesocolic diverticular perforation of the sigmoid colon was diagnosed. The present case is a very rare condition. However, it was possible to make a diagnosis preoperatively by detecting air collection in the anterior pararenal space on CT scan. If a sigmoid perforation occurs between the leaves of the mesocolon, air extends into the root of the sigmoid mesocolon and within the anterior pararenal space.

Key words: colon diverticulosis, intramesocolic perforation, computed tomography, free air

Received December 4, 2006; accepted May 9, 2007.
*Corresponding author. Phone: +81-42-665-5611; Fax: +81-42-665-1796
E-mail: ashizawa@tokyo-med.ac.jp (T. Ashizawa)
Case Report

A 64-year-old woman presented at a local hospital with lower abdominal pain and was given medicine. However, abdominal pain persisted and she was referred to our hospital the next day. On admission, her temperature was 37.4 °C, and physical examination of the abdomen revealed left lower quadrant tenderness without guarding or rebound. Routine laboratory values were unremarkable except for the white blood cell count (15,000/μl) and the C-reactive protein (CRP) value (22.5 mg/dl). CT revealed ill-defined air collection in the middle of the anterior pararenal space (Fig. 1). One day later, CT revealed air collection in the anterior pararenal space spread to the right side and an abscess in the sigmoid mesentery (Fig. 2A, B). Based on the slight leukocytosis and the elevated CRP values as well as the CT findings, a retroperitoneal perforation of the sigmoid colon was highly suspected. At the time of surgery, the sigmoid mesentery was indurated, foreshortened, and edematous with purulent exudate (Fig. 3), and abscess formation was seen throughout the retroperitoneal space. We diagnosed intramesocolic perforation of the sigmoid colon and performed sigmoidectomy including the contaminated mesentery and Hartmann’s procedure. The excised material showed a perforation 3 cm in diameter and some diverticula in the vicinity of the perforated site. The specimen microscopically revealed perforation at the edge of the diverticulum in association with sudden disruption of the proper muscle layer (Fig. 4).

Fig. 1 CT revealed ill-defined air collection in the middle of the anterior pararenal space (arrow).

Fig. 2 A second CT revealed air collection in the anterior pararenal space spread to the right side (arrow) (A) and abscess in the sigmoid mesentery (arrow) (B).
Discussion

Diverticulosis is an acquired disease of the colon characterized by multiple herniation sacs composed of mucosa and submucosa through areas of the colonic wall at weak points where the blood vessels penetrate it to supply the mucosa [5, 6]. Of all patients with diverticula, 80 to 85 percent are believed to remain asymptomatic. The remaining one fourth develop diverticulitis, and a small number will develop complications of diverticulitis such as rupture, fistulas, abscess formation, obstruction, or hemorrhage [7]. Colon diverticulitis is complicated by perforation in approximately 8% of patients, of which 1 to 2% are intramesenteric perforations [8, 9]. In our review of the English and Japanese literature, the first case was reported from Massachusetts General Hospital in 1964 [10], and we found more or less 16 cases of intramesocolic diverticular perforation of the sigmoid colon [8–13]. However, intramesocolic perforation of diverticulitis may be more common than is recognized. If the abscess is small and well-contained in the mesocolon, it may resolve with conservative treatment [11].

In general, rupture of the bowel wall can occur only if there is a sufficient rise in intraluminal pressure, weakness of the bowel wall, or a combination of the 2. Several studies have found the sigmoid colon to be the most frequent site of perforation [14–16]. Weakening of the bowel wall, particularly a poorly supported area such as the antimesenteric border of the rectosigmoid, could predispose it to rupture. The rectosigmoid is the narrowest portion of the colon and therefore is the point most liable to damage in an effort to pass hard fecal masses [15]. Brearley has suggested that impaction of a hard fecal mass on the antimesenteric wall of the bowel, where the blood supply is poorest, may lead to ischemic necrosis and subsequent perforation [17]. Moreover, Slack has described that diverticula are confined almost exclusively to the area between the mesenteric and the antimesenteric taenia [6]. This anatomic location may explain why intramesenteric perforation is seen less often than free or paracolic rupture. On the other hand, the cause of a perforated mesenteric border is suggested to be associated with poor dilatation of the mesenteric border as well as fragility of the circular muscle at the part of the vasa recta passing through the intestinal wall, where diverticula commonly occur due to the rise in intraluminal pressure [16, 18].

Imaging diagnosis of a retroperitoneal perforation of the colon shows air collection in the mesenterium or retroperitoneum. CT is the most superior modality for detecting air collection because the settings allow a lower window level and greater window width, allowing it to more easily distinguish free air from fatty tissue other than modalities [3, 19, 20]. It is
possible to estimate the location of the perforated colon on the basis of thickening of the wall and the
location of free air, or both. Meyers has documented that only if a sigmoid perforation occurs between the
leaves of the mesocolon does extraperitoneal air rise bilaterally into the anterior pararenal spaces (Fig. 5) [21]. The presence of air collection on the left side of the anterior pararenal space can be thought to indicate sigmoid colon perforation from the mesocolon to the retroperitoneum. However, the diseased side of the air collection in the anterior pararenal space moves to the opposite side of the anterior and/or posterior pararenal space with time, making it difficult to establish a differential diagnosis of the cause of the retroperitoneal air collection (Fig. 6) [22]. Air collection in the retroperitoneal space can be caused by acute pancreatitis, emphysematous pyelonephritis, spondylitis, and infectious aneurysm as well as gastrointestinal perforation [18, 23, 24]. The free air produced by infection generally consists of several small bubbles, while on the other hand the free air produced by gastrointestinal perforation tends to lump together. Therefore, it is not generally difficult to distinguish between the causes of free air [19].

References

2. Labs JD, Sarr MG, Fishman EK, Siegelman SS and Cameron JL:

Fig. 5 If a sigmoid perforation occurs between the leaves of the mesocolon, air extends into the root of the sigmoid mesocolon and within the anterior pararenal space.

Fig. 6 The three extraperitoneal compartments. Striped areas: anterior pararenal space, stippled areas: perirenal space, cross-hatched areas: posterior pararenal space.

