Polymorphisms in the Tumor Necrosis Factor-alpha Gene in Turkish Women with Pre-eclampsia and Eclampsia

Ayfer Pazarbaşı*, Müلكye Kasap¢, Ali İrfan Güzelt, Halil Kasap¢, Meliz Onbaşıoğlu, Burcu Özbaç, Ayşe Demirkazık, Fatma Tuncay Özsüen, and Evrim Gürtünc

Departments of Medical Biology and Genetics, Obstetrics and Gynecology, and Biophysics, University of Çukurova, Faculty of Medicine, Bâle, Adana 01330, Turkey

The genetic background predisposing pregnant women to pre-eclampsia/eclampsia (PE/E) is still unknown. The aim of the current study was to investigate whether there is an association between the TNF-alpha-308 and 850 polymorphisms and PE or eclampsia. In this study, 40 cases of eclampsia, 113 cases of PE and 80 normotensive control cases were genotyped for the TNF-alpha-G-308A and C-850 polymorphisms. At position 308, the replacement of Guanine with Adenosine was denoted as TNF2. We found a significant difference between the TNF2 allele frequencies of the eclamptic, pre-eclamptic and normotensive controls. TNF2 (AA) polymorphism frequency was significantly higher among the eclamptics and pre-eclamptics (control: 5%, PE: 13.3%, E: 12.9%). A significantly different genotype distribution of C-850T polymorphism was observed between the PE/E and control groups, with the frequency of the variant TT genotype being significantly reduced in the pre-eclamptics (PE: 17%; E: 17.5%) when compared with the control group (24.3%). We have demonstrated an association between TNF-α polymorphisms and pre-eclampsia susceptibility. However, it is not known whether C-850T polymorphism has a functional effect on the TNF-α gene. In addition, it was not possible to determine whether this polymorphism promotes the progression from PE to eclampsia because of no statistically significant difference between eclampsia and the controls.

Key words: TNF-alpha, polymorphisms, eclampsia, pre-eclampsia
widely held view being that both maternal and paternal
Genome scans in Icelandic [2] and Australian/New
Zealand [3] populations have so far confirmed link-
age to a locus on chromosome 2, with as yet no obvi-
ous positional candidates identified. Endothelial cell
dysfunction is considered to play a key role in the
pathophysiology of PE/E [4]. This contention is
supported by morphological, biochemical and func-
tional observations consistent with endothelial dam-
age or activation [5]. Inflammatory cytokines have
been shown to upregulate the gene expression of
numerous molecules in endothelial cells signaling
their activation [6]. A multifunctional cytokine,
tumor necrosis factor α (TNF-α), is the principal
immune mediator derived from macrophages and lym-
phocytes. It has been implicated in the transcriptional
regulation of the genes for the potent vasocon-
strictors platelet-derived growth factor and
endothelin-1 [1, 7, 8]. TNF-alpha has also been
shown to induce the expression of plasminogen acti-
vator inhibitor-1 in cultured human endothelial cells
[9]. Increased concentrations of endothelin-1 and
plasminogen activator inhibitor-1 have been found in
the plasma of PE patients, and serum from PE
patients upregulates platelet-derived growth factor
gene expression in cultured endothelial cells [10].
These studies suggest that one mechanism by which
inflammatory cytokines such as TNF-α may affect
endothelial cell function in PE is through the upregu-
lation of molecules that have profound effects on the
vasculature. The gene for TNF-α resides within the
class 3 region of the major histocompatibility com-
plex, and several polymorphisms in the promoter
region of the TNF-α gene have been described
(−1,032, −863, −857, −850, −575, −375,
−308, −274, −243, −237, −162) [11]. G-308A
and C-850T transition polymorphisms within the
TNF-α gene promoter have been associated with a
negative outcome in some diseases, including PE.
The association of the T allele of the C-850T poly-
morphism was found with PE, but its association
with eclampsia is unknown. The majority of studies
investigating the functional significance of TNF-α
promoter polymorphisms have focused on the biallelic
G to A transition at position −308. The genetic
variation on position −308 results in 2 allelic forms,
in which the presence of guanine (G) defines the com-
mon variant variation, TNF1 (GG), and the presence
of adenine (A) defines the less common variant,
TNF2 (AA) [12]. The genetic variation on position
−850 results in 2 allelic forms, in which the presence
of Cytosine (C) defines the common variant, CC,
and the presence of Thymidine (T) defines the less
common variant, TT. Taken together, these reports
suggest that the role of TNF-α in the development
of PE/E is evident but not completely understood.
The aim of this study was to investigate whether
there is an association between the TNF-α-G-308A
and C-850T polymorphisms and PE or eclampsia.

Materials and Methods

Written approval was obtained from the Ethics
Committee of Cukurova University Hospital and
informed consent from all patients and controls
before peripheral blood samples were taken.
Information was collected retrospectively about 113
preeclamptic, 40 eclamptic pregnancies of primipar-
ous women and 80 (70 for C-850T and 80 for
G-308A polymorphism were analysed) normotensive
control women with no history of preeclampsia who
delivered at Cukurova University Hospital between

Preeclampsia was defined as the development of
hypertension and new-onset proteinuria (>300 mg of
urinary protein in 24h) in women with no proteinuria
at baseline. Diagnosis was based on clinical assess-
ment, using the criteria of the Report of the National
High Blood Pressure Education Program Working
Group on High Blood Pressure in Pregnancy, 2000
[13]. Pregnant women were considered to have
severe PE if they had either (1) an increase in systo-
lc blood pressure of greater than or equal to 25
mmHg above baseline and/or an increase in diastolic
blood pressure of greater than or equal to 15 mmHg
above baseline, or (2) a persistent systolic pressure
of greater than or equal to 140 mmHg and/or a dia-
static pressure of greater than or equal to 90 mmHg.
These levels had to occur on at least 2 occasions
greater than 0.3 g/l in a 24-hour specimen, or the
dipstick proteinuria score had to be greater than or
equal to 2+ in a random urine collection. Women
who met these criteria and who had experienced
either convulsions or unconsciousness in the perinatal
period were classified as having had eclampsia.
Because PE/E is typically a disease of first pregnancies [1, 14, 15], this study was limited only to primigravid patients. Women with preexisting hypertension, chronic renal disease or autoimmune disorders such as systemic lupus erythematosus known to predispose them to PE were excluded.

DNA was extracted from peripheral blood lymphocytes by using a standard salting out extraction method modified from Miller’s method [16]. In the method, 0.5 ml of peripheral blood was treated with 1 ml of erythrocyte lysis buffer (0.32 M sucrose, 10 mM Tris-HCl pH7.5, 5 mM MgCl₂, 1% Triton X-100) at room temperature for 5 min. In order to collect leukocytes, the mixture was centrifuged at 4,000 rpm for 5 min and the leukocyte pellet was dissolved with 0.5 ml of the lysis buffer, and then centrifuged and rinsed with physiological tampon (0.075 M NaCl, 0.025 M EDTA). The cells were incubated in lysis buffer containing 250 μl of TE-9 (500 Tris-HCl pH9.0, 20 mM EDTA, 10 mM NaCl), 100 μl of 10% SDS and 20 μl of proteinase-K (10mg/ml) at 65 °C for 1 h. At the end of the incubation, 150 μl of 6 M salt solution was added, shaken strongly and centrifuged at 15,000 rpm for 10 min. Supernatant was taken to a new tube and DNA was concentrated by adding 1 ml of absolute ethanol. After the centrifugation at 15,000 rpm for 5 min, the DNA pellet was rinsed with 1 ml of 75% ethanol, dried by inverting the tube and dissolved in 200 μl of TE buffer (1 mM Tris-HCl, 1 mM EDTA, pH7.5).

The G-308A and C-850T polymorphisms in the promoter of the TNF-α gene were genotyped by using a PCR-RFLP method as previously described [1, 12, 17–19]. The G-308A variants were genotyped by using primers designed to incorporate the polymorphic site at position -308 relative to the TNF-α transcription start site [12] (Primers for G-308A polymorphism: F-5’-GGGACACACAAAGCATCAAGG-3’; R-5’-AATAGGTGTTTGA- GGCCATG-3’). This variant (A at -308) creates an NcoI (MBI Fermentas, Lithuania) restriction site and can be differentiated by size (126 for the TNF1 allele and 142 for the TNF2 allele) on a 12% polyacrylamide gel. The PCR product (131bp) of C-850T polymorphism was amplified with primers FM850 (mismatch) and R850 [18] (Primers for C-850T polymorphism: F-5’-AAGTCGAGTATGGGGACCCCGTTAA-3’; R-5’-CCCCAGTGTTGGCCATA-TCTTCTT-3’). Subsequently, the 131bp PCR product was digested with HincII (MBI Fermentas, Lithuania) restriction enzyme and subjected to 12% polyacrylamide gel electrophoresis. In the case of a C allele at position –850, HincII digestion produces 106bp and 25bp fragments, whereas the 131bp fragment remains undigested when the T allele is located at this position. Statistical analyses for comparing individual allele and genotype frequencies were carried out using the chi-square test (two-sided asymptotic p values) with SPSS 10.0 software and the level of statistical significance was defined as p < 0.05.

Results

The clinical characteristics of the eclamptics, pre-eclamptics and controls are shown in Table 1. All women with eclampsia and pre-eclampsia and the controls were primigravid. They were used for comparison to exclude the confounding effect of parity on pregnancy outcome. In this study, there was a significant difference between control-eclampsics and control-pre-eclampsics. On average, deliveries occurred 4–5 weeks earlier in the pre-eclamptic and eclamptic women than in the controls.

The genotyping data for the G-308A and C-850T polymorphisms are presented in Tables 2 and 3. We found a difference among the TNF2 allele frequencies of the eclamptics, pre-eclamptics and controls. No homozygous TNF2 genotype was found in the PE/E and control groups. In the heterozygotes (TNF1/TNF2 = GA) the genotype frequency increases from control to eclamptic and pre-eclamptic individuals with frequencies in the order of 5, 12.9, and 13.3%, respectively. A χ² analysis in a 2×2 table showed a significant difference between control-pre-eclampsics (χ² = 16.287 and p < 0.001) and control-eclampsics (χ² = 5.022 and p = 0.025) (Table 2).

Similar results were obtained by comparing the allele frequencies. There was a significant difference between both the control-preeclampsics (χ² = 15.87 and p < 0.001; 2×2 table) and control-eclampsics allele frequencies (χ² = 4.893 and p = 0.027; 2×2 table). Two χ² analyses between the eclamptic and pre-eclamptic individuals for comparing the genotype and allele frequencies did not show a significant difference, respectively (χ² = 0.007 and p = 0.933;
Table 1 Clinical characteristics of the eclamptic, pre-eclamptic and unaffected women

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Controls mean</th>
<th>Eclampsia group mean</th>
<th>PE group mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 70</td>
<td>N = 40</td>
<td>For C and E</td>
</tr>
<tr>
<td>Age (years)</td>
<td>28.5</td>
<td>31.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Pregnancy BMI (kg/m²)</td>
<td>22.8</td>
<td>25</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>129</td>
<td>163</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>83</td>
<td>104</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Gestational age at delivery (weeks)</td>
<td>38.7</td>
<td>33.7</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

BP, blood pressure; E, eclampsia; PE, pre-eclampsia; C, control.

Table 2 Genotype and allele distribution of the G-308A polymorphism in the TNF-α gene in eclamptic, pre-eclamptic and control patients

<table>
<thead>
<tr>
<th>Genotype frequencies</th>
<th>Allele frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG (TNF1)</td>
<td>n %</td>
</tr>
<tr>
<td>N %</td>
<td>n %</td>
</tr>
<tr>
<td>GA (TNF1/TNF2)</td>
<td>34 87.2</td>
</tr>
<tr>
<td>AA (TNF2)</td>
<td>5 12.9</td>
</tr>
<tr>
<td>sum</td>
<td>39 73.6</td>
</tr>
<tr>
<td>GG (TNF1)</td>
<td>73</td>
</tr>
<tr>
<td>AA (TNF2)</td>
<td>5 6.4</td>
</tr>
<tr>
<td>sum</td>
<td>78</td>
</tr>
<tr>
<td>Eclampsic</td>
<td>16.287, p < 0.001 (2 × 2 with controls for PE)*</td>
</tr>
<tr>
<td>PE</td>
<td>5.022, p = 0.025 (2 × 2 with controls for E)*</td>
</tr>
<tr>
<td>Controls</td>
<td>15.87, p < 0.001 (2 × 2 with controls for PE)*</td>
</tr>
<tr>
<td></td>
<td>4.893, p = 0.027 (2 × 2 with controls for E)*</td>
</tr>
</tbody>
</table>

*The significant χ² statistics between controls, pre-eclamptics and eclampsics.

Table 3 Genotype and allele distribution of the C-850T polymorphism in the TNF-α gene in eclamptic, pre-eclamptic and control patients

<table>
<thead>
<tr>
<th>Genotype frequencies</th>
<th>Allele frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>n %</td>
</tr>
<tr>
<td>n %</td>
<td>n %</td>
</tr>
<tr>
<td>CT</td>
<td>16 40</td>
</tr>
<tr>
<td>TT</td>
<td>40 17</td>
</tr>
<tr>
<td>sum</td>
<td>40 57.3</td>
</tr>
<tr>
<td>C</td>
<td>49</td>
</tr>
<tr>
<td>T</td>
<td>31 38.8</td>
</tr>
<tr>
<td>sum</td>
<td>80</td>
</tr>
<tr>
<td>Eclampsic</td>
<td>57.609, p < 0.001 (2 × 3 with controls for PE)*</td>
</tr>
<tr>
<td>PE</td>
<td>34.951, p < 0.001(2 × 2 with controls for PE)*</td>
</tr>
</tbody>
</table>

*The significant χ² statistics between controls and pre-eclamptics.
\[\chi^2 = 0.006 \text{ and } p = 0.936; \ 2 \times 2 \text{ tables}. \]

A different genotype distribution of C-850T polymorphism was observed between the PE/E and control groups, with the frequency of variant TT genotype being reduced in the preeclamptic (17\%) and eclamptic groups (17.5\%) compared with the control (24.3\%). A \(\chi^2 \) analysis in a \(2 \times 3 \) table showed a significant difference between the control and preeclamptic samples with \(\chi^2 = 57.609 \text{ and } p < 0.001 \) (Table 3). There was no significant difference between the control and eclamptic patients (\(\chi^2 = 2.770 \text{ and } p = 0.250 \)). The frequency of variant T allele was reduced in the preeclamptic (28.1\%) and eclamptic groups (38.8\%) compared with the control (48\%). The same results with genotype frequencies were obtained by comparing the allele frequencies of the PE and controls. We found a significant difference between the control and pre-eclamptic allele frequencies (\(\chi^2 = 34.951 \text{ and } p < 0.001; \ 2 \times 2 \text{ table} \)), while we found no significant difference between the control and eclamptics (\(\chi^2 = 2.659 \text{ and } p = 0.103; \ 2 \times 2 \text{ table} \)).

Table 4 shows a comparison of our results with those of previous reports. The genotype and allele distributions of the C-850T polymorphism differed significantly between the pre-eclampsia group and the control group (\(p = 0.003 \) and \(p = 0.003 \), respectively), as previously reported (Heiskanen et al., 2002). The genotype and allele distributions of the G-308A polymorphism differed significantly between the eclampsia

<table>
<thead>
<tr>
<th>Genotype frequencies</th>
<th>Allele frequencies</th>
<th>Genotype frequencies</th>
<th>Allele frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CT</td>
<td>TT</td>
<td>C</td>
</tr>
<tr>
<td>Heiskanen et al. 2002; Control</td>
<td>83.5 13.9 2.6 90.4 9.6</td>
<td>PE</td>
<td>93.2 4.5 2.3 95.5 4.5</td>
</tr>
<tr>
<td>Kaiser et al. 2004 Control</td>
<td>67.0 29.0 4.0 81.5 18.5</td>
<td>PE</td>
<td>60.7 36.1 3.3 78.7 21.3</td>
</tr>
<tr>
<td>Saarela et al. 2005 Control</td>
<td>81.7 18.3 0.0 90.9 9.1</td>
<td>PE</td>
<td>72.9 24.1 3.0 85.0 15.0</td>
</tr>
<tr>
<td>Our results Control</td>
<td>48.4 31.9 24.3 52.1 48.0</td>
<td>PE</td>
<td>60.7 22.3 17.0 71.9 28.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>40.0 42.5 17.5 61.3 38.8</td>
</tr>
</tbody>
</table>

P-values for each study:
1. The frequency of the T allele in the control group was 9.6\%, whereas in the preeclamptic group it was 4.5\%. \(p = 0.030 \) and 0.030 for the genotype and allele data of PE-Control statistics respectively (Heiskanen et al., 2002).
2. A significant difference between control and eclamptic samples for the genotype and allele data of heterozygotes (TNF1/TNF2) with \(p = 0.025 \) (Kaiser et al., 2004).
3. In the case of G-308A polymorphism, there were no statistically significant differences in the genotype distribution (\(p = 0.080 \). The frequency of the A allele was 15\% in the preeclamptics and 9.1\% among the controls (\(p = 0.046 \) (Saarela et al., 2005). 4. We found a significant difference between the control-preeclampsias (\(p < 0.001 \) and \(p < 0.001 \) and control-eclamptics (\(p = 0.025 \) and \(p = 0.027 \)) for the genotype and allele data of heterozygotes (GA) respectively. We also found a significant difference between the control-preeclampsias (\(p < 0.001 \) and \(p < 0.001 \) for the genotype and allele distribution of the C-850T polymorphism in the TNF-\(\alpha \) gene.
group and the control group \((p = 0.025 \text{ and } p = 0.025) \), respectively, as Kaiser et al. reported. The genotype and allele distributions of the G-308A polymorphism did not differ significantly between the pre-eclampsia group and the control group \((p = 0.046 \text{ and } p = 0.08) \), respectively, as Saarela et al. (2005) reported.

Discussion

This study analysing eclampsia and PE patients in a Turkish population with respect to the TNF-\(\alpha \)-G-308A and C-850T promoter polymorphisms showed a significantly increased incidence of the TNF2 (AA) allele and a reduced variant T allele with PE and eclampsia.

Although we found no association between body mass index, systolic bp, diastolic bp and gestational age at delivery of preeclamptics and eclamptics, elevated prepregnancy body mass index and waist circumference have been strongly associated with pre-eclampsia in previous studies [20–29]. In our study, they are statistically related to the diseases compared with the controls. Women with preeclampsia and eclampsia were of higher socioeconomic status, and this likely biased the relationship between body mass index and preeclampsia toward the null in our study. Obesity is associated with chronic inflammation and oxidative stress [29, 30]. Thus, elevated body fat may trigger excessive cytokine production among genetically susceptible pregnant women [29].

Our findings of a significantly increased incidence of the TNF2 allele and an approximately equal incidence of the TNF1 with controls is in contrast with Chen et al. (1996), who found a significantly higher incidence of the TNF1 allele in PE patients compared with controls [31]. However, some researchers found no significant difference in the allele frequencies of the G-308A polymorphism between PE/E and controls [1, 32–34]. The relationship between the G-308A polymorphism and PE has recently been described by Haggerty et al. (2005) [29]. Analyzing eclampsia and PE separately, we found that the genotype frequencies of the TNF2 in our pre-eclamptic and eclamptic groups was significantly higher than the controls, while no significant difference was found between the eclamptic and PE patients. In agreement with our findings, the study undertaken by Kaiser et al. (2004) did not differentiate between eclamptic and PE patients, but they analysed only G-308A promoter polymorphism in their study [1]. In the study of Saarela et al. (2005), the less frequent A allele (TNF2) of the G-308A polymorphism was found to be associated with an increased risk of pre-eclampsia in Finnish women [35], but there were no statistically significant differences in the genotype and allele distribution between the pre-eclamptics and controls. The presence of the allele A leads to expression of the TNF2 variant and is correlated with the PE. With reporter genes under the control of the 2 allelic TNF promoters (TNF1 and TNF2), TNF2 is a much stronger transcriptional activator than the common allele (TNF1) [36] and could contribute to the upregulation of various genes involved in PE disease. The significant increase in the TNF2 allele in eclamptic patients could indicate that a higher expression of TNF-\(\alpha \) promotes the progression from PE to eclampsia.

It is generally accepted that PE and eclampsia are expressions of the same syndrome, with eclampsia being the fulminating form of PE. Their pathology is common, and PE is a mild case of eclampsia. In our study, the T allele occurred at a lower frequency in PE than in eclampsia. While the T allele is \(\text{PE < eclampsia < normal} \), the CC genotype is \(\text{PE > normal > eclampsia} \). Our data does not imply that the T allele exerts a protective effect against this pathology. On the other hand, according to the results of PE<normal for the T allele, Heiskanen et al. (2002) reported that the C-850T allele may be protective against the development of PE [19]. A lower incidence of the T genotype compared with the controls found in PE in present study is not the first example, but it is the first in eclampsia. In this study, there was a significant difference between the control and pre-eclamptic genotypes for C-850T polymorphism, while there was no significant difference between control and eclamptics [19]. The genotype and allele distributions of the C-850T polymorphism differed significantly between the pre-eclampsia group and the control group as previously reported (Heiskanen et al., 2002).

Hayashi et al. (2005) demonstrated no significant increase in TNF-\(\alpha \) levels in the placenta in pre-eclampsia despite a significant increase in the serum
TNF-α levels [37]. These findings suggest that TNF-α in the placenta is not a key cytokine that interferes with normal trophoblast invasion into the myometrium in pre-eclampsia, and that sources other than the placenta may be contributing to the elevated levels of TNF-α found in the circulation of pre-eclamptic patients. Freeman et al. (2004) found that TNF-α levels were increased by 33% between the first and third trimesters in pre-eclamptic pregnancies. They concluded from this study that pre-eclampsia is associated with short and long-term changes in inflammatory status [38].

The primary strength of our study is that we examined 2 polymorphisms in the promoter region of the TNF-α gene in a group of Turkish pre-eclamptic/eclamptic women, which allowed us to gain an understanding of whether population susceptibility for PE/eclampsia in this population was different from those in other populations. A weakness of our study is that the data observed was obtained from a limited population (Turkish women). The main limitation of the study is the lack of circulating cytokine measures that are needed to prove a functional relationship between polymorphisms, elevated cytokines, and PE/eclampsia.

In summary, we have demonstrated an association between TNF-α polymorphisms and pre-eclampsia susceptibility. It is not known whether C-850T polymorphism has a functional effect on the TNF-α gene, but we could not say that this polymorphism promotes the progression from PE to eclampsia. It is true that susceptibility in Turkey for PE/eclampsia may be different from other cases. There have been some additional reports on TNF-α polymorphism and PE/eclampsia. A possible reason for the inconsistency among these reports may be a genetic basis that causes different susceptibilities among different populations. The mechanisms behind this finding remain to be determined.

References

