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alpain and calcineurin are 2 important eff ec-
tors of the intracellular actions of calcium.  

Calpain is a Ca2＋-activated neutral cysteine protease 
that catalyzes limited proteolysis of substrate pro-
teins.  Calcineurin is a widely distributed class of 
protein phosphateses and belongs to the protein phos-
phatase 2B family of Ca2＋/calmodulin-dependent ser-

ine/threonine protein phosphatases [1,  2].  
Activation of these 2 proteins by calcium levels in 
the physiological range has widespread eff ects,  from 
the direct eff ects of proteolysis and dephosphoryla-
tion of target proteins,  to the indirect modulation of 
diverse downstream signaling pathways.  This regu-
lated cleavage by calpain and dephosphorylation by 
calcineurin is critical in a variety of cell processes,  
including cell embryonic development,  proliferation,  
diff erentiation,  migration,  cell cycle progression,  
meiosis,  and mitosis [3ﾝ12].  Deregulation of calpain 
and calcineurin,  caused by a disruption of calcium 
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Intracellular calcium is a powerful secondary messenger that aff ects a number of calcium sensors,  
including calpain,  a Ca2＋-dependent cysteine protease,  and calcineurin,  a Ca2＋/calmodulin-dependent 
protein phosphatase.  Maintenance of low basal levels of intracellular calcium allows for the tightly 
regulated physiological activation of these proteins,  which is crucial to a wide variety of cellular pro-
cesses,  such as fertilization,  proliferation,  development,  learning,  and memory.  Deregulation of cal-
pain and calcineurin has been implicated in the pathogenesis of several disorders,  including hyperten-
sion,  heart disease,  diabetes,  cerebral ischemia,  and Alzheimer’s disease.  Recent studies have 
demonstrated an interplay between calpain and calcineurin,  in which calpain can directly regulate 
calcineurin activity through proteolysis in glutamate-stimulated neurons in culture and in vivo.  The 
calpain-mediated proteolytic cleavage of calcineurin increases phosphatase activity,  which promotes 
caspase-mediated neuronal cell death.  Thus,  the activation of the calpain-calcineurin pathway could 
contribute to calcium-dependent disorders,  especially those associated with Alzheimer’s disease and 
myocardial hypertrophy.  Here,  we focus briefl y on recent advances in revealing the structural and 
functional properties of these 2 calcium-activated proteins,  as well as on the interplay between the 2,  
in an eff ort to understand how calpain-calcineurin signaling may relate to the pathogenesis of cal-
cium-dependent disorders.
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homeostasis,  is critically involved in the pathogenesis 
of several important calcium-dependent diseases,  
such as hypertension,  heart disease,  diabetes,  and 
Alzheimer’s disease.  Moreover,  under certain patho-
logical conditions,  calpain and calcineurin may inter-
act,  and this interaction may play a role in the patho-
genesis of many calcium-dependent disorders.  Here 
we provide an overview of Ca2＋-dependent activation 
of calpain and calcineurin at the molecular and cellu-
lar levels and discuss the potential interplay between 
the 2 in the pathogenesis of calcium-dependent disor-
ders.

General Properties of the Calpain Family

　　Calpains function as cytoplasmic cysteine protein-
ases,  regulatory enzymes transducing intracellular 
Ca2＋ signals into the controlled proteolysis of their 
substrates.  Because of the presence of numerous 
downstream targets in a variety of signaling path-
ways,  calpains are speculated to play important roles 
in cytoskeletal remodeling,  cell diff erentiation,  apop-
tosis,  necrosis,  embryonic development,  and long-

term potentiation in the central nervous system.  The 
overactivation of calpain is connected to a number of 
diseases,  including muscular dystrophy,  cardiac and 
cerebral ischemia,  traumatic brain injury,  platelet 
aggregation,  restenosis,  neurodegenerative diseases,  
rheumatoid arthritis,  and cataracts,  making calpain 
an attractive drug target [13ﾝ18].
　　Calpains are intracellular nonlysosomal Ca2＋-reg-
ulated cysteine proteases ubiquitously found in ani-
mal tissues [19].  Based on human sequence homol-
ogy,  14 human genes have been identifi ed as members 
of the calpain large catalytic 80 kDa family,  and 2 
human genes for the small regulatory 30 kDa family 
[20,  21] (Table 1).  The large catalytic subunit of 
calpains consists of 2 groups,  typical and atypical,  
containing nine and 6 members,  respectively.  
Calpains 1,  2,  3a,  3b,  8,  9,  11,  12,  and 13 are 
typical calpains characterized by a C-terminal Ca2＋
-binding domain that includes an EF-hand motif.  The 
small optic lobe homology,  including calpains 5,  6,  7,  
8b,  10a,  and 15,  are atypical calpains ; they lack 
EF-hand motifs and contain additional domains diff er-
ent from those of typical calpains.  Among the typical 
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Table 1　　The General information of calpain family

Common Name Gene Used Name Distribution Species
Amino
Acid

Residues

Typical Calpain

Calpain 1 Capn1 µ-Calpain Ubiquitous Mammalian 714
Calpain 2 Capn2 m-Calpain Ubiquitous Mammalian 700
Calpain 3a Capn3 nCL-1,  p94 Skeletal muscle Mammalian 821
Calpain 3b Capn3 Lp82 Lens Mammalian 821
Calpain 8a Capn8 nCL-2 Stomach Mammalian 703
Calpain 9 Capn9 nCL-4 Digestive tracts Mammalian 690
Calpain 11 Capn11 Testis Mammalian 702
Calpain 12 Capn12 Hair follicle Mammalian 720
Calpain13a
Calpain 13b

Capn13 Ubiquitous Mammalian 423

Atypical Calpain

Calpain 5 Capn5 nCL-3,  htra3 Ubiquitous Mammalian 640
Calpain 6 Capn6 CANPX Placenta,

Embryonic 
muscle

Mammalian 641

Calpain 7 Capn7 palBH Ubiquitous Mammalian 813
Calpain 8b Capn8 nCL-2 Stomach Mammalian 703
Calpain 10 Capn10 Ubiquitous Mammalian 672
Calpain 15 Capn15 SOLH Ubiquitous Mammalian 1,086

Small Calpain
Small Subunit I Capn 4  (SOL) Ubiquitous Mammalian 268
Small Subunit II Capn14 Mammalian 248



calpains,  ｻ- and m-calpains (also called calpain I and 
calpain II,  respectively) are the most characterized 
heterodimeric members.  They are encoded by genes 
CAPN1 and CAPN2 in mammalians.  Based on amino 
acid sequence comparisons,  the large subunit of 
ｻ-calpain and that of m-calpains are each comprised 
of up to 4 distinct domains (I-IV ; Fig.  1).  The 
N-terminal region contains residues 1ﾝ19 and is a 
single ｸ-helix ; it can interact with domain VI of the 
small subunits and may be important for stability.  
Domain II is known to carry residues Cys105,  
His262,  and the Asn286 triad,  which are responsible 
for calpain catalytic activity.  It is structurally simi-
lar to the catalytic domains of other cysteine prote-
ases,  such as papain,  caspases,  and cathepsins B,  L,  
and S.  This domain is composed of 2 subdomains ﾝ
IIa (residues 20ﾝ210) and IIb (residues 211ﾝ355) ﾝ
and a substrate binding cleft.  Subdomain IIa includes 
the catalytic Cys105,  while subdomain IIb contains 
the His262 and Asn286 residues of the catalytic 
triad [22,  23].  Domain III (residues 356ﾝ514) can 
bind Ca2＋and consists of eight ｹ-strands arranged in 
a ｹ-sandwich confi guration similar to those of C2 
domains,  a stretch of approximately 130 amino acids 
that binds phospholipids in a Ca2＋-dependent manner 
found in phospholipase C,  protein kinase C, and so 

on [24,  25].  Domain IV (residues 531ﾝ700),  at the 
C-terminal end of the large subunit, is a Ca2＋-binding 
domain structurally containing 5 sets of EF-hand 
similar to those found in calmodulin [26ﾝ28].  In 
addition,  there is a long,  exposed linker region span-
ning through amino acid residues 516ﾝ530 between 
domains III and IV.  The small 30 kDa regulatory 
subunit contains 2 domains.  Domain V (residues 1ﾝ
101),  the N-terminal region of the small subunit,  is a 
hydrophobic domain rich in glycine and may function 
as a membrane anchor.  Domain VI (residues 102ﾝ
268),  the C-terminal end of the small subunit,  is a 
Ca2＋-binding region similar to domain IV of the large 
subunit [29ﾝ30].  The large catalytic subunit associ-
ates with the small regulatory subunit through the 
extreme C-terminal fi fth EF-hand motif in IV and VI 
to form a heterodimeric calpain [29,  31ﾝ33].

Ca2＋-dependent Calpain Activation

　　An understanding of the molecular-level details of 
calpain activation is crucial for comprehending the 
functional properties of this protease and its charac-
terization of pathophysiological signifi cance in many 
diseases.  X-ray structural analyses have revealed 
that there are at least 3 diff erent Ca2＋-binding sites 
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Fig. 1　　Schematic representation of domain architecture of the classical calpains.  The catalytic subunit possesses domains I-IV.  
Domain I contains residues 1ﾝ19 and interacts with domain VI of the small subunits.  Domain II contains residues 20ﾝ355 and is divided 
into 2 subdomains,  IIa and IIb,  which carry residues of Cys105,  His262,  and the Asn286 triad responsible for calpain catalytic activity.  
Domain III contains residues 356ﾝ514, which harbors the C2 area that binds phospholipids.  Domain IV contains residues 515ﾝ700 and is 
the C-terminal end of the large subunit.  It consists of 5 consecutive EF-hand motifs.  The regulatory subunit contains domain V,  which is 
a highly fl exible,  glycine-rich region,  and domain VI,  which is a Ca2＋ binding region,  similar to domain IV of the catalytic subunit.　



in m-calpain : the two EF-hands (calmodulin-like 
domains IV and VI),  the cysteine catalytic region 
(domain II),  and the acidic loop (C2-like domain III) 
[23,  30,  34].  In the absence of Ca2＋,  the 2 subdo-
mains of the catalytic subunit, IIa and IIb,  are sepa-
rated by a deep crevice,  thus maintaining the active 
site in a state in which the catalytic triad residues 
are under a structural conformation that does not 
allow for substrate hydrolysis (Fig.  2).  In this con-
formation,  subdomain IIa is restrained by a circular 
arrangement of domain I,  the N-terminal anchor pep-
tide,  binding to domain IV.  Subdomain IIb is bound 
by an acidic loop in domain III [35ﾝ37].  When cal-
cium binds to these domains,  a major conformational 
change occurs that ultimately produces a competent 
active site in the cysteine protease region.  Studies 
have suggested that calpains undergo a Ca2＋-depen-
dent two-stage activation [37,  Fig.  2].  At the fi rst 
stage,  the binding of calcium to domain III and two 
EF-hand regions results in an auto-cleavage of 
domain I,  eliminating the N-terminal link between the 
large 80 kDa catalytic subunit and the small 30 kDa 
regulatory subunit.  This calcium binding would allow 
movement within domain II,  in which subdomain IIb 
turns over towards subdomain IIa,  thereby forming 
an active site [34,  38ﾝ47].  At the second stage of 
activation,  the binding of calcium directly to the cys-
teine residue causes a shift in the conformation 
where subdomains IIa and IIb reposition the catalytic 
site cleft to a spatial arrangement favorable for sub-
strate hydrolysis.  This proposed two-stage Ca2＋

-dependent process is a general activation mechanism 
for calpain superfamily members.  The activation 
mechanism for the nonheterodimeric calpains that do 
not contain small subunits and those lacking EF-hand 
or C2-like domains in the large subunit could be 
alterative.  Unlike the cysteine catalytic site (domain 
II) present in all members of the calpain superfamily,  
the fl anking domains ﾝ domains III,  IV,  and VI ﾝ are 
varied in atypical calpains [48].  These nonheterodi-
meric calpains could be directly activated by the 
cooperative binding of Ca2＋ to domain II without the 
fi rst stage of activation.

Inhibition of Calpain Activities

　　Because calpain irreversibly cleaves numerous 
signaling and structural proteins,  with widespread 
impact on cell functioning and viability,  the protease 
activity is highly controlled in vivo by multiple mecha-
nisms,  including phosphorylation and an endogenous 
inhibitor,  calpastatin [49,  50].  Calpastatin is an 
interacting partner of calpain that is capable of inhib-
iting calpain activity.  The binding of calpastatin to 
calpain is a Ca2＋-dependent event and is reversible 
[51,  52].  Studies have suggested that binding of 
calpastatin to calpain occurs before calpain can initi-
ate proteolytic activity,  as the Ca2＋concentration 
required for calpastatin binding to calpain is less 
than the Ca2＋concentration required for the half-
maximal proteolytic activity of μ- and m-calpains [52,  
53].  Although calpastatin is the only known inhibitor 
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Fig. 2　　Calcium-dependent calpain activation.  Fig. 2 was adapted from [21] and represents the activation mechanism of calpain by 
Ca2＋.  A shows activation in the absence of Ca2＋ ; the 2 subdomains of the catalytic subunit,  IIa and IIb,  are separated by a deep crev-
ice.  B shows the binding of Ca2＋ and phospholipids (PL) to calpain,  initiating a series of structural movements that result in IIa and IIb 
close together to form a functional catalytic site.



with absolute specifi city for both μ- and m-calpains,  
it possesses a large molecular mass,  making it cell-
impermeable,  and thus has limited therapeutic use.
　　Calpastatin has 4 repeating,  marginally homolo-
gous (23ﾝ36ｵ) inhibitory domains (I-IV),  each having 
approximately 140 amino acid residues,  and an 
N-terminal domain L that has no inhibitory activity 
(Fig.  3) [54ﾝ57].  Each individual domain consists of 
3 subdomains,  A,  B,  and C,  with subdomain B play-
ing a central role in calpain inhibition [58ﾝ60].  A 
27-residue peptide (CS),  containing most of subdo-
main B from domain I of human calpastatin,  is a 
potent and specifi c inhibitor of calpain in vitro but has 
little ability to translocate across the cell membrane.  
However,  fusion of this CS peptide to a protein 
transduction domain,  an 11 poly-arginine peptide 
(11R),  allows it to be cell-permeable and eff ectively 
inhibits calpain activity [61,  62ﾝ64].  Studies have 
compared in vitro inhibitory ability between 11R-CS 
and the natural peptide CS on calpain auto-cleavage 
in cultured hippocampal neurons,  and found that the 
IC50 values are 0.48 ｻM for CS and 0.51 μM for 
11R-CS [62].  Application of the 11R-CS to hippo-
campal cultures at a concentration of 50 ｻM substan-
tially protects neurons from 500 ｻM glutamate-
induced excitotoxicity [63].
　　Phosphorylation is another way to control calpain 
acitivity.  Calpain has several phosphorylation sites.  
One of them is phosphorylated by protein kinase A 
(PKA),  which negatively regulates calpain activity.  

It has been reported that domain III of the human 
m-calpain large subunit is directly phosphorylated in 
vitro at Ser369 or Thr370 by PKA [65,  66].  
Ser369/Thr370 is located in the interface region 
between domains III and IV,  and phosphorylation of 
these sites presumably leads to contact between these 
domains,  which can prevent the formation of the cal-
pain active cleft.  The biological role of PKA-
mediated phosphorylation of m-calpain has been 
determined in living cells.  In NR6WT mouse fi bro-
blasts,  phosphorylation of m-calpain by PKA at Ser 
369 or Thr370 decreases epidermal growth factor 
(EGF)-induced activation of m-calpain and inhibits 
fi broblast migration [65].
　　In addition,  inhibitors derived from natural 
sources or produced synthetically have been devel-
oped and proven to be eff ective against calpain activ-
ity.  For example,  the representative peptidyl epoxy-
succinate inhibitors are trans-epoxysuccinyl-L-
leucylamido-4-guanidino-butane (E64) and its 
derivative,  E64d ; peptidyl aldehyde inhibitors 
include leupeptin,  calpain inhibitor I,  calpain inhibi-
tor II,  calpeptin,  and MDL28170.  These inhibitors 
inactivate calpain reversibly or irreversibly by form-
ing a covalent bond with the active site thiolate or 
interacting with the Ca2＋-binding domain of the cal-
pain large subunit [67] ; they show specifi city for 
calpains over other cysteine proteases and low cell 
membrane permeability [68].
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Fig. 3　　Schematic diagram showing the domain structure of human calpastatin,  calpastatin peptide (CS),  [11] arginine (11R),  and 
11R-fused CS.  Calpastatin is comprised of an N-terminal domain L and four repeated domains,  each of which contains 140 amino acid 
residues.  A,  B,  and C regions are subdomains having signifi cant sequence homology within each domain.  Subdomain B contains a 
highly conserved sequence that has been implicated in calpain inhibition.  CS is a 27-residue oligopeptide encoded by exon 1B of human 
calpastatin.  11R is an eff ective protein transduction domain including 11 poly-arginine peptides.



General Properties of Calcineurin

　　Calcineurin is a heterodimer consisting of a cata-
lytic subunit (calcineurin A) with a molecular mass of 
about 57ﾝ59 kDa and a regulatory calcium-binding 
subunit (calcineurin B) with a molecular mass of 
19 kDa [69].  These subunits are tightly associated 
and can be dissociated only by the use of denaturants 
[70].  Calcineurin is ubiquitously distributed in 
eukaryotes and widely distributed in the brain,  with 
high levels in the hippocampus and caudate putamen 
[69,  71ﾝ76].  Immunohistochemistry and in situ 
hybridization have shown the presence of calcineurin 
A in cell bodies,  postsynaptic densities (PSDs),  den-
drites,  axons,  and spines.  Within the cell,  approxi-
mately half of the calcineurin population is in the 
cytosol,  and the other half is associated with the 
plasma membrane [69].  Calcineurin is largely absent 
from glia and interneurons in the hippocampus [77].
　　Calcineurin has intrinsic Ca2＋-binding properties 

[71,  78].  Structural and functional analyses suggest 
that calcineurin B contains four “EF”-hand,  Ca2＋
-binding sites,  a myristoylated-binding domain,  and 
an affi  nity for calcineurin A [79ﾝ81].  Mammalians 
have 3 isoforms of calcineurin A (ｸ,  ｹ,  and ｺ,  also 
called ｸ1,  ｸ2,  and ｸ3) and 2 of calcineurin B,  B1 
and B2 [82ﾝ85].  Expression of calcineurin Aｺ and 
B2 is restricted to the testis,  while calcineurin Aｸ,  
Aｹ,  and B1 are expressed in a wide spatiotemporal 
distribution [86].
　　The active site of calcineurin is located on the A 
subunit (Fig.  4).  The catalytic subunit calcineurin A 
(521 residues) contains a phosphatase domain (resi-
dues 1ﾝ328),  a calcineurin B-binding helical domain 
(residues 348ﾝ368),  a calmodulin binding region (res-
idues 390ﾝ414),  and an autoinhibitory loop (residues 
468ﾝ490).  The gene for mammalian calcineurin B 
encodes a protein of 170 amino acids containing four 
Ca2＋-binding EF-hand motifs [87] (Fig.  4).  
Calcineurin B consists of two Ca2＋-binding domains,  
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Fig. 4　　Schematic representation of structure of calcineurin subunits and calpain-dependent truncation of calcineurin A.  A,  
Calcineurin B protein,  the regulatory subunit,  encoded by the mammalian calcineurin B gene.  It has four Ca2＋-binding EF-hand 
motifs ; B,  Calcineurin A,  the catalytic subunit.  The linear peptide sequence of the calcineurin A subunit is shown,  indicating the 
catalytic domain (residues 70ﾝ328),  the calcineurin B binding domain (residues 348ﾝ362),  the calmodulin binding domain (residues 391ﾝ
414),  and the autoinhibitory domain (residues 468ﾝ490) ; C,  Three calpain-dependent truncated forms of calcineurin A in vitro.  Analysis 
by MALDI-TOF has shown that the N-terminal remaining fragments are 1ﾝ392 residues,  1ﾝ424 residues,  and 1ﾝ501 residues,  which 
correspond to 45,  48,  and 57ﾝ58 kDa truncated calcineurin A.



domain 1 (residues 1ﾝ84) and domain 2 (residues 86ﾝ
169),  which are arranged linearly along its binding 
domain in calcineurin A.  Each domain contains two 
Ca2＋-binding EF-hand motifs that are similar to those 
of calmodulin.

Ca2＋-dependent and Calpain-dependent 
Activation of Calcineurin

　　As a serine/threonine protein phosphatase,  calci-
neurin acts as an eff ector of Ca2＋ signaling by regu-
lating the phosphorylation state of proteins and par-
ticipates in a number of cellular processes,  including 
immune system responses [1,  69,  88ﾝ92],  cardiac 
hypertrophy [93ﾝ101],  neuronal and muscle develop-
ment [102,  103],  the second messenger cAMP path-
way [89,  104],  Na/K ion transportation in nephron 
[105],  and cell cycle regression in lower eukaryotes 
[106].
　　Full activation of the phosphatase activity 
requires both the binding of Ca2＋ to calcineurin B 
and Ca2＋-dependent binding of calmodulin to calcineu-
rin A [1,  2,  69,  109].  In the inactive state,  the 
autoinhibitory domain sterically blocks the active 

site.  When the calcium concentration increases,  cal-
cium and calmodulin bind to their binding sites on 
heterodimeric calcineurin and trigger a conforma-
tional shift,  resulting in the release of the autoinhibi-
tory domain from the catalytic active site.  The pro-
posed Ca2＋/calmodulin-triggered activation of 
calcineurin takes place during physiological condi-
tions and is reversible (Fig.  5).
　　In addition to the conventional activation pathway,  
studies have suggested that calcineurin activation is 
also protease-dependent.  Irreversible proteolytic 
activation of calcineurin occurs in vitro and in vivo.  
Proteases such as calpain,  trypsin,  and chymotryp-
sin C have been reported to cleave calcineurin A 
in vitro [63,  110ﾝ113].  This proteolytic truncation 
of calcineurin A is site-limited,  as only the carboxy-
terminus of the molecule containing the calmodulin-
binding domain and the autoinhibitory domain can be 
readily cleaved by proteases [112,  114].  The 
NH2-terminal two-thirds of the molecule,  which com-
prise the phosphatase catalytic domain and calcineu-
rin B-binding domain,  are resistant to proteolysis 
[112].  Proteolytic modifi cation removes the regula-
tory domain of calcineurin A and changes the phos-
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Fig. 5　　Schematic representation of calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder.  Under 
physiological conditions,  calcineurin activity is regulated by Ca2＋/calmodulin in a reversible manner.  Under some pathological conditions,  
such as Ca2＋-mediated disorders,  calcineurin activity is increased by overactivated calpain.  Calpain-mediated irreversible activation of 
calcineurin is correlated with the major pathology,  the number of neurofi brillary tangles in human Alzheimer's disease brains,  and the 
myocardial hypertrophy in human.



phatase to its constitutively active form,  which no 
longer requires calcium and calmodulin for activation 
[112,  115].
　　Calpain and calcineurin are both Ca2＋-regulated 
proteins in the brain,  in which the calcineurin-medi-
ated signaling pathway is regulated by calpain.  
Increased calpain activity is able to cleave cain/cabin 
1,  an endogenous calcineurin inhibitor [116].  When 
cleaved,  cain/cabin 1 can no longer inhibit calcineu-
rin.  Evidence from Jurkat cells has shown that cleav-
age of cain/cabin 1 by calpain is a necessary step in 
calcineurin-mediated cell death.  In addition,  calci-
neurin A has been shown to be a specifi c substrate of 
calpain in neuronal cultures and in mouse hippocam-
pus [63].  The calpain-mediated post-translational 
modifi cation made the protein phosphatase constitu-
tively active.  Mass spectrometry analysis by 
MALDI-TOF has identifi ed several cleavage sites in 
calcineurin A after in vitro cleavage by calpain.  The 
N-terminal remaining fragments are 1ﾝ392 residues,  
1ﾝ424 residues,  and 1ﾝ501 residues,  which corre-
spond to 45,  48,  and 57 kDa truncated forms of cal-
cineurin A.  The calpain-cleaved 45 kDa form of cal-
cineurin A does not include the calmodulin-binding 
domain or the autoinhibitory domain,  while the 
48 kDa truncated form contains the cleaved 
C-terminal region of the calmodulin-binding 
domain. Both products lack the autoinhibitory domain.  
The 57 kDa truncated calcineurin A is a result of 
cleavage at the C-terminal side of the autoinhibitory 
domain,  and includes the calcineurin B-binding,  
calmodulin-binding,  and autoinhibitory domains.  
Studies have shown that the calpain-cleaved 48 kDa 
and 45 kDa truncations of calcineurin A have full 
enzyme activity and thus are constitutively active 
forms.  In transfected HEK cells,  these two 
N-terminal truncated forms can initiate calcineurin-
mediated NFAT (nuclear factor of activated T-cell) 
gene transcription.  In cultured hippocampal neurons,  
overexpressing an adenoviral-based 48 kDa trunca-
tion of calcineurin A induces caspase activation and 
neuronal cell death.  Moreover,  calpain activation 
and the production of 45ﾝ48 kDa truncation of calci-
neurin A is associated with glutamate-induced neuro-
excitotoxicity in cultures of hippocampal neurons and 
kainate-induced neuroexcitotoxicity in mouse hippo-
campus.

Calcineurin Inhibitors

　　Calcineurin activity can be inhibited by its autoin-
hibitory peptide,  which is a 26-residue peptide that 
interacts with the catalytic domain of the A subunit.  
This peptide blocks calcineurin activity with an IC50 
of 5 μM but lacks the ability to permeate the cell 
membrane [114].  It has been shown that fusing this 
peptide with 11R,  the protein transduction domain 
that is used to introduce the calpain inhibitory pep-
tide CS through the cell membrane,  also allows the 
autoinhibitory peptide to go through the cell mem-
brane [117].  Application of the 11R autoinhibitory 
peptide into cultured neurons effi  ciently inhibits the 
phosphatase activity of calcineurin,  calcineurin-
dependent NFAT nuclear translocation,  and NFAT-
dependent promoter activity in vivo.  Applying the 
peptide at a 50 μM concentration provides neuropro-
tection on glutamate-induced excitatory cell death 
involving a calcineurin-mediated mechanism.
　　Based on the 11R transduction domain,  a high-
affi  nity calcineurin-binding peptide has been devel-
oped by the fusion of this peptide with VIVIT,  the 
calcineurin docking motif of NFAT [118,  119].  The 
11R-VIVIT interferes selectively with the interac-
tion between calcineurin and its substrate NFAT,  
blocking activation and expression of NFAT-
dependent cytokine genes without aff ecting the 
expression of other cytokines that require calcineu-
rin but not NFAT.  The substrate-selective inhibitory 
peptide has an advantage over other calcineurin 
inhibitors in target specifi city,  which indiscrimi-
nately blocks all signaling downstream of the phos-
phatase.  Data have shown that this 11R-VIVIT pep-
tide provides immunosuppression for fully 
mismatched islet allografts in mice without aff ecting 
insulin secretion [119].  A more recent study has 
demonstrated that this peptide is capable of prevent-
ing the development of pressure-overload cardiac 
hypertrophy in a rat model.  This specifi c NFAT 
inhibitor peptide can decrease the ratio of rat heart 
weight to body weight,  the size of cardiac myocytes,  
and the serum brain natriuretic peptide and atrial 
natriuretic peptide levels during the pressure-over-
load hypertrophic response [120].
　　Immunosuppressant drugs cyclosporine A (CsA) 
and FK506 have long been known as specifi c potent 
inhibitors of calcineurin [121].  They are fungal-
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derived compounds that require binding to their cog-
nate intracellular immunophilins (cyclophilin A for 
cyclosporine A and FKBP12 for FK506) prior to 
inhibiting calcineurin activity.  The cyclosporine A/
cyclophilin A or FK506/FKBP12 complex binds to a 
variety of sites in calcineurin,  including the 
N-terminus of the calcineurin B binding helix,  the 
calcineurin B-subunit,  and the catalytic domain of 
calcineurin [121].
　　In addition to synthetic and natural inhibitors,  
calcineurin protein phosphatase activity is also known 
to be potentially inhibited by a number of endogenous 
cellular proteins,  such as protein kinase A anchoring 
protein (AKAP79),  cain/cabin 1,  calcineurin homolo-
gous protein (CHP),  and the calcipressin family of 
proteins [122ﾝ128].  In rat hippocampal neurons,  
calcineurin and the regulatory subunit of protein 
kinase A colocalize via AKAP79,  which contains a 
domain homologous to FKBP that is predicted to be 
a calcineurin binding domain [122].  Cain/cabin 1 is 
a 2220-residue phosphoprotein that inhibits calcinu-
erin phosphatase activity in a noncompetitive fashion 
[123].  In cells,  the overexpression of CHP inhibits 
calcineurin phosphatase activity by 50ｵ and presents 
in a dose-dependent manner.  As the major member of 
the calcipressin family,  calcipressin 1,  also known as 
Down Syndrome Critical Region 1 (DSCR1),  is 
expressed in diverse cell types and tissues,  including 
heart/cardiac muscle,  striate muscle,  brain/neuronal 
cells,  and T-cells [127,  129ﾝ135].  Calcipressin 1 
binds to calcineurin at or near the active site and 
negatively regulates calcineurin phosphatase activity.  
Its biological roles include protection against calcium-
mediated oxidative stress,  cardiac hypertrophy,  
VEGF-mediated signaling during angiogenesis,  and 
the formation of aggresomes in Alzheimer’s disease 
[132,  136ﾝ141].

Calpain-calcineurin Signaling in 
Calcium-dependent Disorders

Calpain-calcineurin signaling in Alzheimer’s 
disease.　 Alzheimer’s disease is a progressive and 
irreversible neurodegenerative disorder character-
ized by cognitive,  memory,  and behavioral impair-
ments [142,  143].  The disease process involves the 
degeneration of synapses and neurons,  particularly 
in the hippocampus and neocortex.  The histological 

hallmarks of these brain regions of patients with 
Alzheimer’s include extracellular deposits of 
ｹ-amyloid in neuritic plaques,  intracellular neurofi -
brillary tangles consisting of abnormally hyperphos-
phorylated aggregates of the microtubule-associated 
protein tau,  and selective neuronal loss.  Although 
the molecular pathogenesis of Alzheimer’s disease is 
not fully understood,  dysregulation of calcium 
homeostasis is believed to play an important role in 
neurodegeneration.  Evidence has shown that the dis-
turbance of calcium homeostasis causes widespread 
activation of calpain in the brain in Alzheimer’s dis-
ease ; an abnormal increase in calpain activity could 
be a potential molecular basis for neuronal degenera-
tion [144,  145].  In Alzheimer’s disease,  the ratio of 
activated calpain I to its latent precursor isoform in 
the neocortex is threefold than that in normal indi-
viduals.  In surviving cells,  persistent calpain activa-
tion in the brain in Alzheimer’s disease strongly cor-
relates with neurofi brillary pathology and with the 
extent of decline in levels of secreted amyloid pre-
cursor protein in the brain [144,  145].  Moreover,  
researchers have observed that the overactivation of 
calpain I in the brain in Alzheimer’s disease contrib-
utes to proteolytically activated calcineurin,  and that 
the calpain-mediated activation of calcineurin is cor-
related with major brain pathology and the number of 
neurofi brillary tangles (NFTs) in human Alzheimer’s 
brains [146].  Analysis by mass spectrometry has 
indicated that in the brain with Alzheimer’s disease,  
calpain I cleaved off  C-terminal 20 amino acids from 
60 kDa full-length to 57 kDa truncated calcineurin A 
at lysine 501,  a position C-terminal to the autoinhibi-
tory domain.  Similar to the wild type,  the 57 kDa 
truncated calcineurin A still requires Ca2＋/calmodu-
lin for its phosphatase activity,  but this phosphatase 
activity is remarkably activated upon truncation.  
Calpain I-mediated truncation and activation of calci-
neurin are correlated with the numbers of NFTs but 
not with that of ｹ-amyloid plaques.  This fi nding 
revealed a critical role of dysregulated calpain-calci-
neurin signaling resulting from the disturbance of 
calcium homeostasis in neurofi brillary degeneration 
in Alzheimer’s disease (Fig.  5).
　　Calpain-calcineurin signaling in myocardial 
hypertrophy and ischemic myocardium.　 While 
the hypertrophic response is initially a compensatory 
mechanism that augments cardiac output,  sustained 

131Calpain-calcineurin Signaling in the Pathogenesis of Calcium-dependent DisorderJune 2007



hypertrophy can lead to dilated cardiomyopathy,  
heart failure,  and sudden death.  The calcineurin-
mediated transcriptional pathway is crucially involved 
in the pathogenesis of cardiac hypertrophy [93,  147
ﾝ149].  A variety of hypertrophic stimuli,  such as 
angiotensin II,  phenylephrine,  and endothelin-1,  lead 
to an elevation of intracellular Ca2＋ and subsequent 
activation of calcineurin,  which leads to dephosphor-
ylation of the nuclear transcription factor NF-ATc 
(nuclear factor of activated T-cells),  resulting in the 
induction of genes typical of cardiac hypertrophy.  
Calpain-induced activation of calcineurin has recently 
been observed in hypertrophied myocardium both in 
vitro and in vivo [150].  In an animal model of myo-
cardial hypertrophy,  stimulation of rat cardiomyo-
cytes with angiotensin II for 24 h causes a signifi cant 
increase in calpain activity and calpain-mediated pro-
teolysis of calcineurin A.  Proteolysis of calcineurin 
A by calpain in angiotensin II-stimulated cardiomyo-
cytes produces a 48 kDa N-terminal fragment (resi-
dues 1ﾝ424),  which lacks the autoinhibitory domain 
and matches exactly the N-terminal truncation of cal-
cineurin A found in in vitro digestion by m-calpain 
[63].  Without the autoinhibitory domain,  the trun-
cated calcineurin A is constitutively nuclear and 
active,  even after removal of the hypertrophic stimu-
lus.  The 48 kDa N-terminal truncated form of calci-
neurin A has been found in vivo in human hypertro-
phied myocardium [150].  In addition to myocardial 
hypertrophy,  studies have shown that during isch-
emia and reperfusion,  there is increased infl ux of 
Ca2＋ into the cells,  which can activate u-calpain and 

m-calpain [151,  152].  Rat heart tissues that experi-
enced 30 min ischemia followed by 30 min reperfusion 
displayed increased calpain activity and m-calpain-
mediated degradation of full-length calcineurin A.  In 
that model,  calpain-mediated cleavage created a 
46 kDa truncated calcineurin A and caused increased 
calcineurin phosphotase activity in general [153].  
This suggests that calpain-calcineurin signaling might 
be a critical contributor to the pathogenesis of rat 
ischemic myocardium (Fig.  5).

Concluding Remarks

　　Calpain-mediated limited proteolysis has emerged 
as a key post-translational mechanism that regulates 
a large number of intracellular proteins.  Tight regu-
lation of calpain activity could potentially control 
substrate function,  which may be crucial to cellular 
pathophysiological processes of some Ca2＋-dependent 
disorders (Fig.  5).  Recent substantial evidence has 
demonstrated that calpain-calcineurin signaling is 
potentially associated with several Ca2＋-dependent 
disorders,  including Alzheimer’s disease and cardiac 
hypertrophy,  providing a better understanding of the 
pathogenesis of these diseases.  Abnormal calpain 
activity can lead to cleavage of calcineurin,  resulting 
in calcineurin phosphatase overactivation,  which 
could initiate mitochondrial dysfunction and further 
the mitochondria-dependent cell death pathway [154ﾝ
157].  In addition,  calpain-mediated cleavage of calci-
neurin activates the protein phosphatase,  resulting in 
cardiac hypertrophy.  Inhibition of calcineurin activ-
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Table 2　　Cell membrane permeable 11R fusion peptides and their properties

Peptide name Inhibitory Target Role of the peptide Reference

Eleven
Arginine-Calpastatin
Peptide (11R-CS)

Calpains Inhibition of calpain auto-cleavage (IC50,  
0.51 µM),  calpain-mediated cleavage of 
calcineurin (50 µM),  and glutamate-induced 
neuroexcitotoxicity (50 µM)

62, 63, 64

11R-auto-inhibitory
Peptide

Calcineurin Inhibition of alcineurin-dependent NFAT nuclear 
translocation,  NFAT-dependent promoter 
activity,  and glutamate-induced neuro-
excitotoxicity (50 µM)

117

11R-VIVIT the
NFAT-calcineurin
interaction

Inhibition of activation and expression of NFAT-
dependent cytokine genes,  immunosuppression 
of fully mismatched islet allografts in mice,  
prevention of rat development of pressure-
overload cardiac hypertrophy.

119, 120

11R-VEET NA A control peptide of 11R-VIVIT 119, 120



ity in transgenic mice expressing activated calcineu-
rin by administration of the immunosuppressant CyA 
blocks the development of hypertrophy [158ﾝ162].  
Thus,  calpain inhibitors,  which block calpain-depen-
dent calcineurin activation,  may merit investigation 
as potential therapeutics for certain forms of heart 
and neurodegenerative disease.  Further biochemical 
and physiological experiments will be necessary to 
establish their role,  both in vitro and in vivo,  in the 
inhibition of the calpain-calcineurin pathway,  using 
11R-fused member-permeable peptide inhibitors 
(Table 2) in those Ca2＋-related diseases.
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